
September 8, 2005 17:24 WSPC/INSTRUCTION FILE ChamparnaudGuigne-
Hansel

International Journal of Foundations of Computer Science
Vol. 16, No. 5 (2005) 851–865
c© World Scientific Publishing Company

COVER TRANSDUCERS FOR FUNCTIONS WITH FINITE DOMAIN

JEAN-MARC CHAMPARNAUD1, FRANCK GUINGNE2,3 and GEORGES HANSEL2

1 PSI Laboratory (Université de Rouen, CNRS)
76821 Mont-Saint-Aignan — France

Jean-Marc.Champarnaud@univ-rouen.fr – http://www.univ-rouen.fr/psi/
2 LIFAR Laboratory (Université de Rouen)

76821 Mont-Saint-Aignan — France
{Franck.Guingne, Georges.Hansel}@univ-rouen.fr – http://www.univ-rouen.fr/LIFAR/

3 Xerox Research Centre Europe – Grenoble Laboratory
6 chemin de Maupertuis – 38240 Meylan — France

Franck.Guingne@xrce.xerox.com – http://www.xrce.xerox.com

Received 20 November 2004
Accepted 14 February 2005

Communicated by L. Ilie and D. Wotschke

Cover automata were introduced a few years ago for designing a compact representation of finite
languages. Our aim is to extend this notion to cover transducers for functions with finite domain.
Given two alphabets Σ and Ω, and a function α : Σ∗ → Ω∗ of order l (the maximal length of a word
in the domain of α), a cover transducer for α is any subsequential transducer that realizes the function
α when its input is restricted to the set of words of Σ∗ having a length not greater than l. We study the
problem of reducing the number of states of a cover transducer. We report experimental results, from
an implementation using WFSC (Weighted Finite State Compiler), a Xerox tool for handling weighted
finite state automata and transducers.

1. Introduction

Cover automata for finite languages were introduced by Câmpeanu et al. [4]. A cover au-
tomaton for a language L of order l (the maximal length of a word in L) is a deterministic
automaton A such that L(A) ∩ Σ≤l = L, where Σ≤l is the subset of Σ∗ of words whose
length is not greater than l. In this paper, we define the notion of a cover transducer for a
function with finite domain as an extension of the notion of a cover automaton for a finite
language. Given two alphabets Σ and Ω, and a function α : Σ ∗ → Ω∗ of order l (the max-
imal length of a word in the domain of α), a cover transducer for α is any subsequential
transducer that realizes the function α when its input is restricted to Σ≤l.

Since covering generally reduces the size of an automaton [15], it is of practical inter-
est to be able to compute a minimal cover automaton for L (with respect to the number
of states). It is shown in [4] that a minimal cover automaton can be obtained from any
cover automaton for L by merging states according to a relation involving their right lan-
guages. Minimality (with respect to L) comes from the fact that a similarity relation on

September 8, 2005 17:24 WSPC/INSTRUCTION FILE ChamparnaudGuigne-
Hansel

852

Σ≤l [10, 9, 6] underlies the state relation (see [6] for a general study of similarity relations).
Several algorithms were designed for computing a minimal cover automaton [4, 5, 13], ei-
ther from a deterministic automaton recognizing L, or from an arbitrary cover automaton
for L. The best algorithm currently known [13] is O(n log n) time and O(n) space.

Our solution for cover transducers is less ambitious since it seems quite difficult to
give a straightforward characterization of minimal cover transducers. We first discuss the
relative merging power of different relations defined on the set of states of the initial cover
transducer. We show that the relation on Σ≤l that underlies the coarsest merging relation
is not semi-transitive. Computing a minimal partition of the set of states according to this
merging relation is therefore more complex than according to a similarity relation.

We also show that the algorithm for minimizing a subsequential transducer [8] or a
weighted deterministic automaton [14] can be adapted for reducing cover transducers. Our
solution combines the construction of a prefix transducer [1] and the computation of a min-
imal cover automaton. We discuss the power of this technique and we report experimental
results obtained using Xerox tools for creating and manipulating finite state automata and
transducers: XFST [11, 2] for the unweighted case, and WFSC [12] for the weighted case.

Our algorithm was run on acyclic transducers with several hundred states and the anal-
ysis of the state reduction enlightens the interest of cover transducers for handling dictio-
naries.

Useful definitions concerning automata, cover automata and transducers are recalled
in the following section. Basic tools for the study of cover transducers are introduced in
Section 3. Relations for reducing a cover transducer are compared in Section 4 (merging
relations) and in Section 5 (similarity relations). Reduction via the minimization of a cover
automaton is studied in Section 6. Section 7 reports on implementation aspects and presents
an analysis of experimental results.

2. Preliminaries

2.1. Automata

The reader is assumed to be familiar with automata theory [17]; here we just introduce
some notation. Let A = (Σ, Q, qs, Q+, ·) be a deterministic automaton on the alphabet Σ,
where Q is the finite set of states, qs ∈ Q is the initial state, Q+ is the set of final states
and the transition function, denoted by ·, maps (q, a) ∈ Q × Σ to q · a ∈ Q. The left

language of a state q ∈ Q is
←−−
L(q) = {x ∈ Σ∗ | qs · x = q}. The right language of q is−−→

L(q) = {x ∈ Σ∗ | q · x ∈ Q+}. A deterministic automaton is said to be complete if its
transition function is a total one. A deterministic automaton can be completed by adding a
sink state to Q. A semiautomaton is an automaton without defined final states. The level of
a state q is the length of a shortest path from the initial state qs to q: ∀q ∈ Q, level(q) =
min{|x| | x ∈ Σ∗ and qs · x = q}. The subset of words of Σ∗ having a length not greater
than l is denoted by Σ≤l. A language L is said to be of order l if the maximal length of a
word in L is equal to l.

September 8, 2005 17:24 WSPC/INSTRUCTION FILE ChamparnaudGuigne-
Hansel

853

2.2. Cover automata

A relation ∼ over Σ≤l is semi-transitive if and only if for all x, y, z in Σ≤l such that
|x| ≤ |y| ≤ |z|, the following implications hold: x ∼ y and y ∼ z ⇒ x ∼ z, and
x ∼ y and x ∼ z ⇒ y ∼ z. A reflexive, symmetric and semi-transitive relation is a
similarity relation. Let L be a language of order l. Let x and y be two words of Σ≤l and
k = l − max{|x|, |y|}. The words x and y are said to be similar with respect to L (we
write x ∼L y) if and only if for all t in Σ≤k the equivalence xt ∈ L⇔ yt ∈ L holds. The
relation∼L is a similarity relation [10, 9].

A cover automaton [4] for a language L of order l is a deterministic automaton C =
(Σ, Q, qs, Q+, ·) such that L(C) ∩ Σ≤l = L. A minimal cover automaton for L has a
minimal number of states among the cover automata for L. Let C be a cover automaton for
the language L of order l and Q be its set of states. The height of a state q is height(q) =
l − level(q). Two states p and q of Q such that h = min{height(p), height(q)} can be

merged according to the relation∼C defined on Q by p ∼C q ⇔ −−→L(p)∩Σ≤h =
−−→
L(q)∩Σ≤h.

Since A is a cover automaton for L, the relations ∼C and ∼L are such that p ∼C q ⇒
(∀(x, y) | qs · x = p and qs · y = q), x ∼L y.

A general study of similarity relations over the set Σ≤l can be found in [6]. Let ∼ be a
similarity relation on Σ≤l. An element x of Σ≤l is said to be minimal if for all y ∈ Σ≤l,
y ∼ x⇒ |y| ≥ |x|. The set of all minimal elements of Σ≤l is denoted M . A deterministic

semiautomaton is a similarity semiautomaton for the relation ∼ if for all q ∈ Q,
←−
L (q) is a

similarity set. Such a semiautomaton is said to recognize the relation ∼. The main results
are the following:

Theorem 1. [6] 1) The relation ∼ is an equivalence relation on M .
2) Let πM be the partition of M into equivalence classes. Then any minimal similarity
partition of Σ≤l (according to ∼) has |πM | elements and there exists such a partition.
3) Let∼ be a right-invariant similarity relation on Σ≤l. Then any similarity semiautomaton
recognizing∼L has at least |πM | states and there exists a semiautomaton with |πM | states
that recognizes ∼L.

A straightforward application to the relation ∼L yields the following results.

Theorem 2. [6] 1) A semiautomaton recognizing the relation ∼L, when equipped with a
convenient set of final states, is a cover automaton for L.
2) Conversely, given an arbitrary cover automaton C for L, the underlying semiautomaton
of C recognizes the relation∼L.
3) Any cover automaton for the language L has at least |πM | states and there exists a cover
automaton with |πM | states for L.

The relation∼L being a similarity one, there exists a (not necessarily unique) minimal
cover automaton for L. It should be noted that minimality is defined with respect to the
language L. On the other hand, given a cover automaton C, a minimal one, denoted by C(C)
in the sequel, can be computed by merging states, according to the following theorem.

September 8, 2005 17:24 WSPC/INSTRUCTION FILE ChamparnaudGuigne-
Hansel

854

Theorem 3. [4] A cover automaton C for a finite language L is minimal if and only if no
two different states of C can be merged according to the relation ∼C .

2.3. Subsequential transducers

Subsequential transducers [16, 7, 3] are a relevant model for studying functions with finite
domain. A subsequential transducer is a tuple S = (Σ, Ω, Q, q , i, t, ·, ∗) where:
– Σ (resp. Ω) is the input (resp. output) alphabet,
– Q is the finite set of states and q ∈ Q is the initial state,
– i ∈ Ω∗ is the initialization value and t: Q→ Ω∗ is the termination function,
– the transition function, denoted by ·, maps (q, a) ∈ Q× Σ to q · a ∈ Q,
– the output function, denoted by ∗, maps (q, a) ∈ Q× Σ to q ∗ a ∈ Ω∗.

The transition (resp. output) function is extended to map Q × Σ ∗ into Q (resp. Ω∗).
The set of final states of S is equal to the domain dom(t) of t. Therefore, by sake of
simplicity, we do not include dom(t) in the tuple that defines S. A path is a finite sequence
((qi, ai, bi, qi+1))i=0,...,n−1 of tuples in Q×Σ×Ω∗×Q with qi ·ai = qi+1 and qi∗ai = bi.
A final path ends in qn ∈ dom(t). A successful path is a final path starting in q0 = q . The
word a0 · · · an−1 ∈ Σ∗ (resp. b0 · · · bn−1 ∈ Ω∗, b0 · · · bn−1t(qn) ∈ Ω∗) is the input (resp.
output, final) label of the path. A transducer is said to be trim if each state q ∈ Q lies on a
successful path.

A subsequential transducer S realizes a subsequential function S : Σ∗ → Ω∗ such that
∀x ∈ dom(S), S(x) = i(q ∗ x)t(q · x). The order of a function α : Σ∗ → Ω∗ is the
maximal length of a word in dom(α), the domain of α. The subsequential transducer S p

is deduced from S by letting p be the new initial state and ε be the initialization value.
The function Sp realized by Sp is such that ∀x ∈ dom(Sp), Sp(x) = (p ∗ x)t(p · x).
Two subsequential transducers S and S ′ are said to be equivalent if they realize the same
function.

3. Cover transducers: basic properties

In this section, we state the definition of a cover transducer as well as additional definitions
and propositions that are particularly useful in the sequel.

Let S = (Σ, Ω, Q, q , i, t, ·, ∗) be a subsequential transducer. The underlying automa-
ton of S is the automaton A(S) = (ΘA, Q ∪ {qs, qt}, qs, {qt}, ·A) such that:
– ΘA = {(a, b) ∈ Σ×Ω∗ | ∃q ∈ Q s. t. q ∗ a = b} ∪ {(ε, i)}∪ {(ε, t(q)) | q ∈ dom(t)},
– ∀q ∈ Q, ∀θ = (a, b) ∈ ΘA, q ·A θ = q · a,
– qs ·A (ε, i) = q and ∀q ∈ dom(t), q ·A (ε, t(q)) = qt.

The underlying language of S is the language L(A) recognized by A(S). Given an
automaton A and a transducer S such as A = A(S), we say that is S is the overlying
transducer of A and we write S = T (A).

Definition 4. Let α be a function of order l. A subsequential transducer S is a cover trans-
ducer for α if for all x ∈ Σ≤l, S(x) = α(x).

In the sequel, the restriction of the function Sp to Σ≤h is denoted by Sh
p . Note that, by

September 8, 2005 17:24 WSPC/INSTRUCTION FILE ChamparnaudGuigne-
Hansel

855

construction, the underlying automatonA of a cover transducer for a function α of order l

is a cover automaton for the language L ′
A = L(A) ∩Θ≤l+2

A .
Let y and z be two elements of Ω∗. The element z is said to be a prefix of y (z � y)

if there exists an element t of Ω∗ such that y = zt. The element t is denoted by z−1y. Let
E ⊂ Ω∗. We denote by

∧
u∈E u the longest common prefix (lcp for short) of the elements

in E.

Definition 5. Let S be a cover transducer for a function α of order l. Let p be a state of S.
We define the following longest common prefixes:
– λS(p) =

∧
x∈Σ∗ Sp(x),

– νS(p, h) =
∧

x∈Σ≤h Sp(x), with 0 ≤ h ≤ height(p),
– µS(p) = νS(p, height(p)) =

∧
x∈Σ≤height(p) Sp(x).

Lemma 6. Let S be a cover transducer and p be a state of S. The following relation holds:
λS(p) � µS(p) = νS(p, height(p)) � νS(p, height(p)− 1) � . . . � νS(p, 0).

Definition 7. Let S = (Σ, Ω, Q, q , i, t, ·, ∗) be a subsequential transducer. The prefix
transducer of S is the transducer P = (Σ, Ω, Q, q , iP , tP , ·, ∗P) such that:
– iP = iλS(q) and, ∀p ∈ dom(t), tP(p) = λS(p)−1t(p),
– p ∗P a = λS(p)−1(p ∗ a)λS(p · a), ∀p ∈ Q, ∀a ∈ Σ.

Proposition 8. [7] The following properties hold:
– the transducers P and S are equivalent,
– the underlying automata of P and S are identical,
– ∀p ∈ Q, ∀x ∈ Σ∗, Pp(x) = λS(p)−1Sp(x), and λP(p) = ε.

The prefix transducer of S is denoted by P (S). In the following, we address both the
general case when S is an arbitrary cover transducer, and the acyclic case when S realizes
the function α. In the acyclic case, the following relation holds: ∀p ∈ Q, λS(p) = µS(p),
and P enjoys specific properties due to the specific properties of µS . Therefore λS (resp.
P) is rather denoted µS (resp.M) in the acyclic case.

4. Merging relations

Let S be a cover transducer for a function α of order l. Our aim is to compute a reduced
cover transducer. We first give a precise meaning to the notion of merging two states in a
cover transducer.

Definition 9. Let S = (Σ, Ω, Q, q , i, t, ·, ∗) be a cover transducer for the function α

of order l. Let p, q ∈ Q, p �= q and q �= q . We consider the subsequential transducer
F(S, p, q) = (Σ, Ω, QF , q , i, f, •, �) such that:
– QF = Q \ {q},
– ∀r ∈ QF , f(r) = t(r),
– ∀r ∈ QF , ∀a ∈ Σ, r • a = if r · a �= q then r · a else p.
– ∀r ∈ QF , ∀a ∈ Σ, if r · a �= q then r � a = r ∗ a.

September 8, 2005 17:24 WSPC/INSTRUCTION FILE ChamparnaudGuigne-
Hansel

856

We write F for F(S, p, q) if there is no ambiguity. By construction the state q is re-
moved; every in-going transition (r, a, r∗a, q) of q in S is replaced by an in-going transition
(r, a, r � a, p) of p in F , where r � a ∈ Ω∗ is a parameter that will be fixed later.

Definition 10. Let S be a cover transducer for a function α of order l and Q be its set of
states. A relation R on Q is said to be a merging relation in S if and only if for every pair
(p, q) ∈ Q × Q such that pRq, the output function � of F(S, p, q) can be fixed so that
F(S, p, q) be a cover transducer for α.

4.1. The merging relation ≈S

For minimizing a subsequential transducer, it is natural to compare the functions S p and
Sq . For the covering problem, given two states p and q with height(p) ≥ height(q) = h, it
is natural to compare the functions Sh

p and Sh
q . The most general relation we can think of

in a cover transducer S seems to be the following.

Definition 11. The relation≈1 on Q is such that p ≈1 q is equivalent to the two following
conditions:
(i) height(p) ≥ height(q) = h,
(ii) there exist β, γ ∈ Ω∗ such that β−1Sh

p = γ−1Sh
q .

Notice that β depends on p and h and γ depends on q and h. Condition (ii) amounts
to say that there exists a function G : Σ≤h → Ω∗ such that Sh

p = βG and Sh
q = γG. It

implies that β is a prefix of νp = νS(p, h) and γ is a prefix of νq = νS(q, h).

Definition 12. Let ≈0 be the relation on Q such that p ≈0 q is equivalent to the two
following conditions:
(i) height(p) ≥ height(q) = h,
(ii) ν−1

p Sh
p = ν−1

q Sh
q .

Lemma 13. The relation ≈0 is coarser than the relation≈1.

Proof. We prove that p ≈1 q ⇒ p ≈0 q. We suppose that p ≈1 q. We set ϕ =
∧

x∈Σ≤h G(x) and H = ϕG. We have νp = βϕ and νq = γϕ. Consequently, Sh
p = βϕH

and Sh
q = γϕH . Finally, Sh

p = νpH and Sh
q = νqH . Hence p ≈0 q.

�
Let us examine conditions for the relation ≈0 to be a merging relation in S. Clearly,

merging two states p and q such that height(p) ≥ height(q) implies that each transition
(r, a, r ∗ a, q) in S be replaced by a transition (r, a, r � a, p) in F(S, p, q), with r � a =
(r∗a)νqν

−1
p . Indeed, it would be convenient to be able to extract the function H by dividing

Sh
p by ν(p, h), but it is generally not possible since it would lead to divide Sp by ν(p, h).

Consequently it is necessary that νp be a suffix of (r ∗ a)νq , for all u such that (r, a, u, q)
is a transition in S. This condition is satisfied in particular when νp is a suffix of νq. Hence
the definition:

Definition 14. The relation ≈S over Q is such that p ≈S q is equivalent to the three
following conditions:

September 8, 2005 17:24 WSPC/INSTRUCTION FILE ChamparnaudGuigne-
Hansel

857

(i) height(p) ≥ height(q) = h,
(ii) νS(p, h)−1Sh

p = νS(q, h)−1Sh
q ,

(iii) there exists δ ∈ Ω∗ such that νS(q, h) = δνS(p, h).

We now prove that the relation ≈S is a merging relation in S. The next proposition is
a generalization of Lemma 17 in [4] that addresses the case of cover automata for a finite
language.

Proposition 15. The relation ≈S is a merging relation in S.

Proof. The reasoning is similar to the one in the proof of Lemma 17 in [4]. As a conse-
quence of Definition 14 the definition of the output function � of the transducer F(S, p, q)
can be fixed by setting r � a = (r ∗ a)νqν

−1
p = (r ∗ a)δ, for all pairs (r, a) in QF ×Σ such

that r · a = q. Moreover, the condition (ii) can be rewritten p ≈S q ⇒ Sh
p = δ−1Sh

q . We
now prove that p ≈S q ⇒ F(S, p, q) is a cover transducer for α.

Let us first notice that since height(r) = l ⇔ r = q , we have q �= q and thus q

is a valid initial state for F . Given the initial path with input label x in S, we show that
the corresponding path in F (that does not contain the state q) is such that S(x) = F (x).
Let x ∈ Σ≤l. We have to prove that |F|(x) = α(x), which is equivalent to prove that
|F|(x) = |S|(x). If there is no prefix x1 of x such that q · x1 = q, then the path from q

to q · x1 in S is also a path in F . Thus |F|(x) = |S|(x). Otherwise, let x = x′
1x2 where

x′
1 is the shortest prefix of x such that q · x′

1 = q. Since q �= q , x1 is not empty. We set
x′

1 = x1a, with a ∈ Σ. The initial path with input label x1 in S has an output label equal
to (q ∗ x1) · (r ∗ a). By definition of the output function �, the initial path with input label
x1 in F has an output label equal to (q ∗ x1) · (r ∗ a)δ. Therefore, it suffices to prove that
Fp(x2) = δ−1Sq(x2).

First, consider the case |x2| = 0. Since f(p) = t(p), we have Fp(ε) = Sp(ε). Since
p ≈S q, we have Sp(ε) = δ−1Sq(ε). Hence Fp(ε) = δ−1Sq(ε). Suppose that the statement
holds for |x2| < l′, with 0 < l′ ≤ l − |x1|, which implies l′ ≤ h. Consider the case
|x2| = l′. If there is no nonempty prefix y of x2 such that p ·y = q, then Fp(x2) = Sp(x2).
Since p ≈S q and |x2| = l′ ≤ h, we have Sp(x2) = δ−1Sq(x2) and thus we get Fp(x2) =
δ−1Sq(x2). Otherwise, let x2 = yz where y is the shortest nonempty prefix of x2 such that
p · y = q (and p • y = p). Then |z| < l′. By induction hypothesis, Fp(z) = δ−1Sq(z).
Therefore Fp(yz) = (p � y)Fp(z) = (p ∗ y)Sq(z) = Sp(yz). Since p ≈S q and |yz| =
l′ ≤ h, we have Sp(yz) = δ−1Sq(yz). Therefore Fp(yz) = δ−1Sq(yz).

�

4.2. Partitioning the set of states w.r.t. the relation ≈S

We now show that the relation ≈ on Σ≤l that underlies the relation ≈S is not a similarity
relation. Let x ∈ Σ≤l. For all 0 ≤ h ≤ l − |x| we set N(x, h) =

∧
u∈Σ≤h α(xu).

Definition 16. Let α be a function of order l. Let x and y be two words of Σ≤l and h =
l − max{|x|, |y|}. The relation ≈ on Σ≤l is such that x ≈ y is equivalent to the two
following conditions:

September 8, 2005 17:24 WSPC/INSTRUCTION FILE ChamparnaudGuigne-
Hansel

858

(i) ∀u ∈ Σ≤h, N(x, h)−1α(xu) = N(y, h)−1α(yu),
(ii) there exists D ∈ Ω∗ such that N(y, h) = DN(x, h).

Since S is a cover transducer for α, the relations ≈S and ≈ are such that p ≈S q ⇒
(∀(x, y) | q · x = p and q · y = q), x ≈ y.

Lemma 17. The relation ≈ on Σ≤l is not a similarity relation.

The merging relation ≈S is based on a relation on Σ≤l that enjoys no nice transitivity
property. Consequently, finding a minimal partition of the set of states according to ≈ is
a priori a more difficult problem than finding one according to a similarity relation. At
the present time we do not know whether there exists an appropriate algorithm or not for
computing a minimal partition according to the relation≈.

5. Similarity relations

We now consider a very simple merging relation.

Definition 18. Two different states p and q are said to be similar (p ∼S q) if the two
following conditions are satisfied:
(i) height(p) ≥ height(q) = h,
(ii) Sh

p = Sh
q .

The merging relation∼S is underlied by a similarity relation ∼ on Σ≤l and thus it can
be computed efficiently.

Definition 19. Let α be a function of order l. Let x and y be two words of Σ≤l and h =
l −max{|x|, |y|}. The relation ∼ on Σ≤l is defined by:

x ∼ y ⇔ (∀u ∈ Σ≤h, α(xu) = α(yu))

Lemma 20. The relation ∼ is a similarity relation on Σ≤l.

Proof. The relation∼ is reflexive and symmetric. Let us show that it is semi-transitive. Let
x, y, z be words of Σ≤l such that |x| ≤ |y| ≤ |z|. We first check that x ∼ y and y ∼ z

⇒ x ∼ z. Let u ∈ Σ≤l such that |u| ≤ l − |z|. Since y ∼ z, we have α(yu) = α(zu).
Since |y| ≤ |z| and x ∼ y, we have α(xu) = α(yu). Consequently, α(xu) = α(zu).
Hence x ∼ z. The proof of the second relation (x ∼ y and x ∼ z⇒ y ∼ z) is similar.

�
Since S is a cover transducer for α, the relations ∼S and ∼ are such that p ∼S q ⇒

(∀(x, y) | q · x = p and q · y = q), x ∼ y. Consequently finding a minimal partition of
Q according to the relation ∼S can be achieved by computing a minimal partition of the
relation∼ on Σ≤l.

According to Proposition 8, the transducers P and S realize the same function. Thus
P is a cover transducer for α and a relation ∼P can be defined. The condition (ii) of
Definition 18 is replaced by the condition P h

p = P h
q , that is equivalent to λS(p)−1Sh

p =
λS(q)−1Sh

q . The relation ∼P is a merging relation in P and it is underlied by a similarity

September 8, 2005 17:24 WSPC/INSTRUCTION FILE ChamparnaudGuigne-
Hansel

859

relation on Σ≤l. In the acyclic case, we considerM instead of P and the relation ∼M
instead of ∼P .

Our aim is to compare the relations ∼S , ∼P and ∼M. We write ∼1≥∼2 if the relation
∼1 is coarser than the relation∼2 and∼1 �=∼2 if the relations∼1 and∼2 are incomparable.

5.1. Relative merging power of the relations ∼S , ∼P and ∼M

We compare the power of the relations ∼S and ∼P in the general case, and the power of
the relations ∼S and ∼M in the acyclic case. We also consider the restriction ∼̂S (resp.
∼̂P , ∼̂M) of the relation ∼S (resp. ∼P ,∼M) to the set Q∆ defined as follows. For all
0 ≤ h ≤ l we set Qh = {p ∈ Q | height(p) = h}. We set Q∆ = ∪0≤h≤lQh ×Qh.

The connection with the equivalence relation ≡S used for minimizing a subsequential
transducer [8] is the following. By definition, we have p ≡S q ⇔ ∀x ∈ Σ∗, Sp(x) =
Sq(x). It is easy to see that p ≡S q ⇒ λS(p) = λS(q) and that the relation ≡P is thus
coarser than the relation ≡S . On the opposite, we show that the relations ∼S and ∼P are
incomparable. The reason is that the prefix λS(p) is computed on the set Σ∗, whereas
similarity of p and q is checked on the set Σ≤h. Therefore there may exist two states p and
q in Q, such that p ∼S q and λS(p) �= λS(q). This explanation is made more precise by
the following lemmas and proposition.

Lemma 21. The following implication holds:
p ∼S q ⇒ ∀ 0 ≤ k ≤ h, νS(p, k) = νS(q, k).

Lemma 22. The following assertions hold:
1) p ∼S q ⇒ λS(p) � λS(q) or λS(q) � λS(p),
2) p ∼S q ⇒ µS(p) � µS(q),
3) (p ∼P q ⇒ p ∼S q)⇔ λS(p) = λS(q),
4) (p ∼M q ⇒ p ∼S q)⇔ µS(p) = µS(q).

Proposition 23. The following properties hold:
1) The relations ∼S and ∼P are incomparable.
2) The restrictions ∼̂S and ∼̂P are incomparable.
3) The relations ∼S and ∼M are incomparable.
4) The relation ∼̂M is coarser than ∼̂S .

Proof. 1) We first show that (p ∼S q �⇒ p ∼P q). Obviously, (p ∼S q ⇒ p ∼P q) ⇔
λS(p) = λS(q). By Lemma 22–1, we know that p ∼S q ⇒ λS(p) � λS(q) or λS(q) �
λS(p). Therefore, (p ∼S q ⇒ p ∼P q) is not necessarily true for all q ∈ Q.

We now show that (p ∼P q �⇒ p ∼S q). By Lemma 22–3, (p ∼P q ⇒ p ∼S q) ⇔
λS(p) = λS(q). Since it is possible to have simultaneously p ∼P q and λS(p) �= λS(q),
(p ∼P q ⇒ p ∼S q) is not necessarily true for all q ∈ Q. We conclude that ∼S �=∼P .

2) By Lemma 21, λS(p) � νS(p, h) and λS(q) � νS(q, h). The comparison of the rela-
tions ∼S and ∼P does not depend on whether height(p) and height(q) are equal or not.
Consequently, we have ∼̂S �= ∼̂P .

September 8, 2005 17:24 WSPC/INSTRUCTION FILE ChamparnaudGuigne-
Hansel

860

3) Let us check that (p ∼S q �⇒ p ∼M q). It is clear that (p ∼P q ⇒ p ∼M q) ⇔
µS(p) = µS(q). By Lemma 22–2, we know that p ∼S q ⇒ µS(p) � µS(q). Therefore,
(p ∼S q ⇒ p ∼M q) is not necessarily true for all q ∈ Q. On the other hand, proof of
(p ∼M q �⇒ p ∼S q) is similar to case (2), using Lemma 22–4. We thus conclude that
∼S �=∼M.

4) Let (p, q) ∈ Qh×Qh and p ∼S q. Then by Lemma 21, µS(p) = νS(p, h) = νS(q, h) =
µS(q). Consequently, we have p ∼S q ⇒ p ∼M q. We conclude that ∼̂M ≥ ∼̂S .

�

6. Reduction via the minimization of a cover automaton

Let S be a cover transducer for a function α of order l. We are concerned here by computing
a reduced cover transducer from S, through the minimization of the cover automaton asso-
ciated either to the underlying automaton of S or to the underlying automaton of the prefix
transducer of S (that is P for the general case orM for the acyclic case). More precisely,
given a cover transducer S, we consider the transducerR such that eitherR = S, R = P
or R = M and we compute a reduced cover transducer UR according to the following
scheme.

Proposition 24. Let UR be computed fromR as follows:
1) Consider the underlying automaton A = A(R) The automaton A is a cover au-
tomaton for the language L ′

A = L(A) ∩ Θ≤l+2
A . Compute a minimal cover automaton

C = C(A(R)) from A(R).
2) Let UR = T (C(A(R))) be the overlying transducer of C.

Then UR is a cover transducer for α and it has fewer states than S.

The proof of Proposition 24 is based on the two following lemmas.

Lemma 25. Let S be a subsequential transducer and A = A(S) be its underlying au-
tomaton. Let Θ = ΘA be the alphabet of A. The set of the successful paths of S (resp. A)
is denoted by ΠS (resp. ΠA). Let q0 = q . The following properties are equivalent:

(1) There exists a path πS ∈ ΠS such that πS = ((qi, xi, ui, qi+1))0≤i<m, with xi ∈ Σ
and ∀ 0 ≤ i < m, ui ∈ Ω∗.

(2) Let x = x0 . . . xm−1 (resp. u = u1 . . . um−1) be the input (resp. output) label of the
path πS . The function realized by S is such that: S(x) = i u t(q · x).

(3) Let πA = ((qs, (ε, i), q0), ((qi, (xi, ui), qi+1))0≤i<m, (qm, (ε, t(qm)), qt)), with ∀
0 ≤ i < m, (xi, ui) ∈ Σ× Ω∗, Then the path πA belongs to ΠA.

(4) Let a = (ε, i)(x0, u0) . . . (xm−1, um−1)(ε, t(qm)) be the label of πA. Then the word
a ∈ Θ∗ belongs to L(A).

Lemma 26. Let S be a cover transducer for a function α of order l and A = A(S) be its
underlying automaton on the alphabet Θ. Let L ′

A = L(A)) ∩Θ≤l+2. By construction, the
automatonA is a cover automaton for the language L ′

A.

September 8, 2005 17:24 WSPC/INSTRUCTION FILE ChamparnaudGuigne-
Hansel

861

a:εε b:ε a:ε b:ε
q0 q1 q2 q3 q4 q5

a:ε

b bab babab

Fig. 1. The prefix-tree transducer S realizing α.

a:εb b:ab a:ε b:ab a:ε

ε ε ε

q0 q1 q2 q3 q4 q5

Fig. 2. The prefix transducer P (S).

(b,ε) (b,ab) (b,ab)

ε:ε
ε:ε

ε:ε

q0 q1 q2 q3 q4 q5

qt

qs
(a,ε) (a,ε) (a,ε)

Fig. 3. The underlying automaton A(P (S)).

Let C = C(A(S)) be a minimal cover automaton for the language L ′
A. Then the over-

lying transducer US = T (C(A(S))) of C is a cover transducer for α.

Proof. (of Proposition 24) By Lemma 26, the transducer UR = T (C(A(R))) is a cover
transducer for α in each of the three cases R = S, R = P (S) and R = M(S). By
construction, we have |T (C(A(R)))| = |C(A(R))| − 2 ≤ |A(R)| − 2 = |R|. Since
|S| = |R| = |M|, we have |UR| ≤ |S|.

�

Following Körner’s example [13] for cover automata, we consider the function α :
{a, b}∗ → {a, b}∗ such that dom(α) = {a, aba, ababa} and α(a) = b, α(aba) =
bab, α(ababa) = babab. Let S be the prefix-tree transducer S that realizes α

(Figure 1). The construction of the reduced cover transducer T (C(A(P (S)))) is illustrated
by Figures 2, 3, 4(a) and 4(b).

September 8, 2005 17:24 WSPC/INSTRUCTION FILE ChamparnaudGuigne-
Hansel

862

(ε,b)

(b,ab)

(ε,ε)
q0 q1 q2qs

(a,ε)

qt

(a) C(A(P (S)))

b

b:ab

q0

a:ε

q1
ε

(b) T (C(A(P (S))))

Fig. 4. A minimal cover automaton C(A(P (S))) (a) and its overlying transducer T (C(A(P (S)))) (b).

6.1. Power of reductions based on a minimal cover automaton

Given a cover transducer S and the relation ∼S , we define the associated relation ∼A(S)

on the set of states of the underlying automaton A(S). Let Q be the set of states of S and
height(q) be the height of q in S. By convention, we set heightA(S)(qs) = l + 1 and
heightA(S)(qt) = −1 so that, for all q ∈ Q, heightA(S)(q) = height(q). Let p and q be
two states of A(S) such that h = heightA(S)(q) ≤ heightA(S)(p).

Definition 27. The relation ∼A(S) on Q ∪ {qs, qt} is defined by

p ∼A(S) q ⇔
−−−→
LA(S)

p ∩Θ≤h+1
A =

−−−→
LA(S)

q ∩Θ≤h+1
A

Since qt is the unique final state, for all q �= qt, we have qt �∼A(S) q. On the other hand,
the state qs · (ε, i) = q is not final whereas for all q �= qs, the state q · (ε, i) is either not
defined or final. Hence, for all q �= qs, we have qs �∼A(S) q. Consequently, ∼A(S) can be
considered as a relation on Q.

We consider the transducer R with either R = S, R = P (general case) or R = M
(acyclic case). The relations∼A(P) and∼A(M) are defined in the same way as the relation
∼A(S). We first compare the relations ∼A(R) and ∼R, for R = S, R = P and R = M.
Then we compare the relations ∼A(S) and ∼A(P) (general case) and ∼A(S) and ∼A(M)

(acyclic case) as well as their restrictions to Q∆.

Proposition 28. 1) ForR = S,R = P andR =M, the relation ∼R is coarser than the
relation ∼A(R).
2) The relations ∼̂M and ∼̂A(M) are equivalent.

Proposition 30 is similar to Proposition 23. Its proof is based on the following lemma.

Lemma 29. The following assertions hold:
1) p ∼A(S) q ⇒ λS(p) � λS(q) or λS(q) � λS(p),
2) p ∼A(P) q ⇒ µS(p) � µS(q),
3) (p ∼A(P) q ⇒ p ∼A(S) q)⇒ λS(p) = λS(q),
4) (p ∼A(M) q ⇒ p ∼A(S) q)⇒ µS(p) = µS(q).

September 8, 2005 17:24 WSPC/INSTRUCTION FILE ChamparnaudGuigne-
Hansel

863

(a) Size of the alphabet = 4 (b) Size of the alphabet = 5

Fig. 5. Acyclic case: relative size of T (C(A(S))) and T (C(A(M))) w.r.t. the order l of the function. The size
of the input and output alphabets is 4 (a) or 5 (b).

Proposition 30. The following properties hold:
1) The relations ∼A(S) and∼A(P) are incomparable.
2) The restrictions ∼̂A(S) and ∼̂A(P) are incomparable.
3) The relations ∼A(S) and∼A(M) are incomparable.
4) The relation ∼̂A(M) is coarser than ∼̂A(S).

According to Proposition 28-1, a relation defined on a transducer is coarser than the
associated relation on the underlying automaton; thus the technique based on the mini-
mization of a cover automaton is only an approximation for the problem of reducing a
cover transducer.

However, as a corollary of Proposition 28-2 and Proposition 30-4 it turns out that it is
relevant to use the prefix transducer of S for solving the acyclic case. Indeed, the acyclic
case is the only one where the restriction to Q∆ of the transducer relation is not coarser than
the restriction of the corresponding automaton relation. Moreover, the relations∼ A(S) and
∼A(M) being incomparable, and the restriction ∼̂A(M) being coarser than the restriction
∼̂A(S), it can be expected that ∼A(M) has a better average reduction ratio than ∼A(S).

7. Experimental results

The scheme described by Proposition 24 was implemented using the Xerox tools for cre-
ating and manipulating finite state automata and transducers: XFST [11, 2] (unweighted
case), and WFSC [12] (weighted case). A command was developed that combines the
construction of a prefix transducer according to the algorithm of Béal and Carton [1],
and the computation of a minimal cover automaton according to the algorithm of
Körner [13]. Given an acyclic cover transducer S for the function α, this command com-
putes the cover transducers T (C(A(S))) and T (C(A(P (S)))).

Numerous tests were carried out in the acyclic case, with the following features: the
size of the input and ouput alphabets are identical and they rank from 2 to 5; functions are

September 8, 2005 17:24 WSPC/INSTRUCTION FILE ChamparnaudGuigne-
Hansel

864

randomly generated; more than fifty percent of the states are final states. The respective
reduction ratios of the cover transducers T (C(A(S))) and T (C(A(M))) (w.r.t. the order l

of the function) are given by Figure 5(a) and Figure 5(b).
Two main observations can be made from these experimental results: first, the reduction

ratio increases with the order of the function for both relations∼A(S) and∼A(M); secondly,
the reduction ratio is significantly greater for the transducer T (C(A(M))) than for the
transducer T (C(A(S))): hence we check that the relation ∼A(M) has a better average
reduction ratio than the relation ∼A(S).

8. Conclusion

The notion of a cover transducer for a function with finite domain can be defined follow-
ing the notion of a cover automaton for a finite language. The problem of reducing a cover
transducer is, however, not as simple. On the one hand, merging relations have no nice tran-
sitivity property and the computation of a minimal partition is thus difficult. On the other
hand, using finer similarity relations and a technique based on minimizing the underlying
cover automaton yields an approximation that is only relevant for the acyclic case.

References

[1] M.-P. Béal and O. Carton, Computing the Prefix of an Automaton, RAIRO Theoret. Comput.
Sci. 34:6 (2001), 503–515.

[2] K. R. Beesley and L. Karttunen, Finite State Morphology, CLSI Publications, Palo Alto, CA,
USA, 2003.

[3] J. Berstel, Transductions and Context-Free Languages, Teubner Sttutgart, 1979.
[4] C. Câmpeanu, N. Sântean, and S. Yu, Minimal Cover-automata for Finite Languages, Theoret.

Comput. Sci. 267 (2001), 3–16.
[5] C. Câmpeanu, A. Păun and S. Yu, An Efficient Algorithm for Constructing Minimal Cover

Automata for Finite Languages, Intern. J. of Foundations of Comput. Sc., 13-1(2002), 99–113.
[6] J.-M. Champarnaud, F. Guingne and G. Hansel, Similarity Relations and Cover Automata,

RAIRO-Info. Theor. Appl., 39(2005), 115–123.
[7] C. Choffrut, Contribution à l’étude de quelques familles remarquables de fonctions ra-

tionnelles, Thèse d’Etat, Université Paris VII, 1978.
[8] C. Choffrut, Minimizing Subsequential Transducers: A Survey, Theoret. Comput. Sci. 292

(2003), no. 1, 131–143.
[9] C. Dwork and L. Stockmeyer, A Time Complexity Gap for Two-Way Probabilistic Finite-State

Automata, SIAM J. on Computing, 19 (1990), 1011–1023.
[10] J. Kaneps and R. Friedvalds, Running Time to Recognize Non-Regular Languages by 2-Way

Probabilistic Automata, in ICALP’91, Lecture Notes in Computer Science, Springer-Verlag,
510(1991), 174–185.

[11] L. Karttunen, T. Gaál, R. M. Kaplan, A. Kempe, P. Tapanainen and T. Yampol, Xerox
Finite-State Home Page, 1996–2004, Xerox Research Centre Europe, Grenoble, France. URL:
http://www.xrce.xerox.com/competencies/content-analysis/fst/.

[12] A. Kempe, C. Baeijs, T. Gaál, F. Guingne and F. Nicart, WFSC – A New Weighted Finite State
Compiler, in CIAA’2003, Lecture Notes in Computer Science, O. Ibarra and Z. Dang eds.,
Springer-Verlag, 2759(2003), 108–119.

[13] H. Körner, A Time and Space Efficient Algorithm for Minimizing Cover Automata for Finite
Languages, Int. J. of Foundations of Comput. Sci. 14 (2003), 1071–1086.

September 8, 2005 17:24 WSPC/INSTRUCTION FILE ChamparnaudGuigne-
Hansel

865

[14] M. Mohri, Minimization Algorithms for Sequential Transducers, Theoret. Comput. Sci. 234
(2000), no. 1–2, 177–201.

[15] N. Sântean, Towards a Minimal Representation for Finite Languages: Theory and Practice,
Master’s Thesis, The University of Western Ontario, 2000.

[16] M. P. Schützenberger, Sur une variante des fonctions séquentielles, Theoret. Comput. Sci. 11
(1977), 47–57.

[17] S. Yu, Regular Languages, in G. Rozenberg and A. Salomaa eds., Handbook of Formal Lan-
guages, Springer, Berlin, 1997.

