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Abstract

This report defines various operations and describes #igwsi for weighted multi-tape automata
(WMTAS). It presents, among others, a new approacimtdti-tape intersectionmeaning the inter-
section of a number of tapes of one WMTA with the same numbeapés of another WMTA, which
can be seen as a generalization of transducer intersedtioour approach, multi-tape intersection is
not considered as an atomic operation but rather as a sexjoémcore elementary ones. We show an
example of multi-tape intersection, actually transducgersection, that can be compiled with our ap-
proach but not with several other methods that we analyziedllywe describe an example of practical
application, namely the preservation of intermediateltesu transduction cascades.
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1 Introduction

Finite state automata (FSAs) and weighted finite state aat®ifWWFSAS) are well known, mathemati-
cally well defined, and offer many practical advantagesg¢Eand Mezei, 1965; Eilenberg, 1974; Kuich
and Salomaa, 1986). They permit, among others, the fasegsong of input strings and can be easily
modified and combined by well defined operations. Both FSAVERSAs are widely used in language
and speech processing (Kaplan and Kay, 1981; Koskenni@parainen, and Voutilainen, 1992; Sproat,
1992; Karttunen et al., 1997; Mohri, 1997; Roche and Schal#%7). A number of software systems
have been designed to manipulate FSAs and WFSAs (Kartturedn #997; van Noord, 1997; Mohri,
Pereira, and Riley, 1998; Beesley and Karttunen, 2003).tBi@ems and applications deal, however,
only with 1-tapeand2-tape automataalso called acceptors and transducers, respectively.

Multi-tape automatgMTAS) (Elgot and Mezei, 1965; Kaplan and Kay, 1994) offediéidnal ad-
vantages such as the possibility of storing different tygfaaformation, used in NLP, on different tapes
or preserving intermediate results of transduction casxamh different tapes so that they can be re-
accessed by any of the following transductions. MTAs hawnbmplemented and used, for example,
in the morphological analysis of Semitic languages, whieeevowels, consonants, pattern, and surface
form of words have been represented on different tapes of B (May, 1987; Kiraz, 1997; Kiraz and
Grimley-Evans, 1998).

This report defines various operations feeighted multi-tape automat@VMTAS) and describes
algorithms that have been implemented for those operatiotiee WFSC toolkit (Kempe et al., 2003).
Some algorithms are new, others are known or similar to kralgorithms. The latter will be recalled to
make this report more complete and self-standing. We pteseew approach toulti-tape intersection
meaning the intersection of a number of tapes of one WMTA withsame number of tapes of another
WMTA. In our approach, multi-tape intersection is not calesed as an atomic operation but rather as a
sequence of more elementary ones, which facilitates itéeimentation. We show an example of multi-
tape intersection, actually transducer intersectiort, ¢ha be compiled with our approach but not with
several other methods that we analyzed. To show the prhotilesance of our work, we include an
example of application: the preservation of intermediasults in transduction cascades.

For the structure of this report see the table of contents.

2 Some Previous Work

2.1 n-Tape Automaton Seen as a Two-Tape Automaton

Rabin and Scott (1959) presented in a survey paper a numbyeswfs and problems on finite 1-way
automata, the last of which — the decidability of the eq@imak of deterministic k-tape automata — has
been solved only recently and by means of purely algebratbods (Harju and Karhumaki, 1991).

Rabin and Scott considered the case of two-tape automatairdathis is not a loss of generality.
They adopted the convention.” that the machine will read for a while on one tape, then chaogéol
and read a while on the other tape, and so on until one of thestegpexhausted. .”. In this view, a
two-tape om-tape machine is just an ordinary automaton with a partitiits states to determine which
tape is to be read.



Kempe, Guingne, Nicart. Algorithms for-Tape Automata. XRCE Report 200431 4

2.2 n-Tape Automaton Seen as a Single-Tape Automaton

Ganchev, Mihov, and Schulz (2003) define the notion of “aeteet k-tape automaton” and the main
idea is to consider this restricted form kftape automata where all transition labels have exactly one
tape with a non-empty single letter. Then they prove thataareuse “classical” algorithms for 1-tape
automata on a one-lettértape automaton. They propose an additional condition talde to use
classical intersection. It is based on the notion that a téapeordinate isnessentiaiff v (w1, ..., wg) €

R (R is a regular relation ovef¥*)*) andvv € %, (w1, ...w;_1,v, wiy1,...,w) € R. And thus to
perform an intersection, they assume that there exists at om@ common essential tape between the
two operands.

2.3 n-Tape Transducer

Kaplan and Kay (1994) define a non-deterministiavay finite-state transducehat is similar to a classic
transducer except that the transition function m@ps ¢ x ... x ¥€t0 29 (with 2 = L U {¢}). To
perform theintersectionbetween twon-tape transducers, they introduced the notiorsane-length
relations. As a result, they treat a subclassmefape transducers to be intersected.

Kiraz (1997) defines an-tape finite state automaton andatiape finite-state transducgintroduc-
ing the notion ofdomain tapeandrange tapeto be able to define a unambiguous compositionfoape
transducers. Operations entape automata are based on (Kaplan and Kay, 1994) , theecten in
particular.

3 Mathematical Objects

In this section we recall the basic definitions of the algebstructures monoid and semiring, and give a
detailed definition of a weighted multi-tape automaton (WA)IBased on the definitions of a weighted

automaton and a multi-tape automaton (Rabin and Scott,; E4§6t and Mezei, 1965; Eilenberg, 1974;

Kuich and Salomaa, 1986).

3.1 Semirings

A monoidis a structure{M, o, 1) consisting of a sef/, an associative binary operatienon M, and
aneutral elementl such thatl o a = ao 1 = a for all a € M. A monoid is calledcommutativeff
aob=boaforalla,be M .

A setK equipped with two binary operations; (collection) and ® (extensiol and two neutral
elements( and1, is called asemiring iff it satisfies the following properties:

1. (K, ®,0) is a commutative monoid
2. (K,®,1) is a monoid

3. extension igeft- andright-distributive over collection:
a®b®c)=(axb)d(a®c), (adb)@c=(a®c)®(b®c), Ya,b,ceK

4. 0 is an annihilator for extension0 ® a =a® 0 =0, VYackK

We denote a generic semiring &s= (K, ®, ®,0,1).
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Some automaton algorithms require semirings to have specdperties. Composition, for example,
requires it to be commutative (Pereira and Riley, 1997; Njdbereira, and Riley, 1998) andremoval
requires it to beék-closed(Mohri, 2002). These properties are defined as follows:

1. commutativity: a @ b=b® a, Va,beK

k+1 k
2. k-closedness:@ a" = @ o™, VacK

n=0 n=0

The following well-known semirings are commutative:
1. B=(B,V,A,0,1): the boolean semiring, with = {0, 1}
2. N = (N, +, x,0,1) : a positive integer semiring with arithmetic addition andltiplication

3. R = (RT,+, x,0,1) : a positive real semiring

T = (R, min, +, 00,0) : areal tropical semiring, witlR © = R* U {cc}

4. R

A number of algorithms require semirings to be equipped waitlorder or partial order denoted by
<. Each idempotent semiring (i.e.,Va € £ : a & a = a) has a natural partial order defined by
a <x b< a®b=a.Inthe above examples, the boolean and the real tropicatiagmare idempotent,
and hence have a natural partial order.

3.2 Weighted Multi-Tape Automata

In analogy to a weighted automaton and a multi-tape autam@IdA), we define aveighted multi-tape
automaton(WMTA), also called weightea-tape automaton, over a semirifig as a six-tuple

A(n) —def <27Q7[a F7E(n)7lc> (1)

with

by being a finite alphabet

Q the finite set of states

1 cqQ the set of initial states

F cqQ the set of final states

n the arity, i.e., the number of tapes 4f"

EM CQx (X" xKxQ being the finite set of-tape transitions and

K =(K,®,®,0,1) the semiring of weights.
For any state € Q,

Aq) ex denotes its initial weight, with\(¢) # 0 < ¢ € I,

0(q) e its final weight, witho(q) # 0 < ¢ € F, and

E(q) c EM™ its finite set of out-going transitions.

For any transitiore™ ¢ E(), with e(™ = (p, £(") 1w, n),

p(e™) p:EM™ = Q denotes its source state
£(e™) ¢: EM — (x*)n its label, which is am-tuple of strings
we™)  w:E—K its weight, withw(e(™) # 0 < ™ ¢ E™, and

n(e™) n:E—Q its target state
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A path (™) of lengthr = |r(™| is a sequence of transitions” el - - e such thatn(e(™) =
p(el)) for all i € [1,r—1]. A path is said to bsuccessfulff p(e!") € I andn(e!™) € F. In the

following we consider only successful paths. The label afaessful path (™ equals the concatenation
of the labels of its transitions

U™y = p(e™)y e(es?) - ee™) 2)

and is am-tuple of strings
o™y = s = (s1,80,...,8) (3)

If all strings s; € ¥* (with j € [1,n]) of a tuples™ are equal, we use the short-hand notaﬁﬁﬂ on
the terminal string;. For example:

(abe)® = (abe, abe, abe) 4)
W = (eeee) (5)

The n strings on any transitior(™ are not “bound” to each other. For example, the string triple
s(®) = (aaa, bb, ccee) can be encoded, among others, by any of the following segseoictransitions:
(a:b:cc)(azb:c)(a:e:c) or (aa:e:e)(a:b:cc)(e:b:ce) of (aaa:bb:cece)(e:e:¢), etc.

The weightw(7(™) of a successful path is

j:HLT]]

w(r™) = A(ple™)) ® (® w( el >) ® o( n(e™)) (6)

We denote byiI(A™) the (possibly infinite) set of successful pathsA¥fY) and byII(s(™) the
(possibly infinite) set of successful paths for thuple of stringss™

(™) = {0 emA) |50 =4(x) ) ™

We call R(A™) the n-ary orn-tape relation ofA(™. It is the (possibly infinite) set of-tuples of
stringss(™ having successful paths it™):

RM = RAM™) = {s | 3x™cm(A™) A oxm) = sy (8)

The weight for anyn-tuple of stringss™ e R(A™) is the collection (semiring sum) of the weights of
all paths labeled witl(™ :
wis®™) = P wE™) (©)

(W ell(s(m)

By relation we mean simply a co-occurrence of strings indspMWe do not assume any particular
relation between those strings such as an input-outpuiaelaAll following operations and algorithms
are independent from any particular relation. It is, howepessible to define an arbitrary weighted
relation between the different tapes®fA™). For exampleR(A?)) of a weightedransducerA®) is
usually considered as a weighted input-output relatioween its two tapes, that are callegbut tape
andoutput tape

In the following we will not distinguish between a languageand a 1-tape relatio®(!), which
allows us to define operations only on relations rather tlmabhath languages and relations.
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4 QOperations

This section defines operations on strinvguples andi-tape relations, taking their weights into account.
Whenever these operations are used on transitions, pathgtanata, they are actually applied to their
labels or relations respectively. For example, the binggration  on two automataA&") S Aé"), ac-
tually meansR (A" 5 A1) = R(A™) 3 R(AM). The unary operatiors on one automatons A™,
actually mean® (o A™) = s R(AM).

Ultimately, we are interested in multi-tape intersectiom &ransduction. The other operations are
introduced because they serve as basis for the two.

4.1 Pairing and Concatenation
We define thepairing of two string tupless™ : v(™ = 4(+™) and its weight as
(815 ySn) t (U1, e ooy Um)  =def (S1y-enySnsUVlyeenyUnm) (120)
W({S1y.ySn) (V1o o oy, Um) ) =def W({S1,...,8n) ) @w ( {(v1,...,0m)) (11)
Pairing is associative (concerning both the string tupfestheir weights) :

8§n1):sgn2):sgn3) _ <8§n1):sgn2)> :Sgns) _ Sgnl): (Sgnz):sgn3)) _ S(nl—l—ng-i-ng) (12)
We will not distinguish between 1-tuples of strings andhgfsi, and hence, instead 6t v or (s):(v),
simply write s:v.

The concatenatiorof two string tuples of equal aritg™v(™ = (") and its weight are defined as

(S5 ey S) (U1, ooy Un)  =def  (S1V1,. .., SnUn) (13)

W (($1y.,8n) V1, Un) ) =det W((S1,---,8n) ) @w ((v1,...,0,)) (14)
Concatenation is associative (concerning both the striptg$ and their weights) :

Sgn)sgn)sén) _ (Sgn)sgn)> Si(in) _ Sgn) <S§n)s§n)) — s (15)

Again, we will not distinguish between 1-tuples of stringslatrings, and hence, insteads6f v\ or
(s)(v), simply write sv.
The relation retween pairing and concatenation can be sspdethrough a matrix of string tuples

S(nl) S(nl)

11 e 1r
: : (16)
N ORI CEY
where thesg.’,zj ) are horizontally concatenated and vertically paired:
S(n1++nm) — <S§71Ll) N sgﬁl)) : PR : (31(/:{"‘) e 31(/37"1774))
= (3&?1) et 37(7??)) e (SY;l) T 357?7:”)) (17)

Note, this equation does not hold for the weights ofiﬁé), unless they are defined over a commutative
semiringkC.
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4.2 Cross-Product

The cross-producof two n-tape relationsR\"™ x R{™ =R(+m) is based on pairing and is defined as
R X REY =gt {8 0™ | s e RT WM € RYY )} (18)

The weight of each string tuplg™t™) R&") X Rg’”) follows from the definition of pairing.

The cross product is an associative operation.

A well-know special case is the cross-product of two acasptb-tape automata) leading to a trans-
ducer (2-tape automaton) :

A@ = AW AW (19)
R(AD) = {s:v | seRAWY),verUAV)} (20)
wa(s:v) = wa,(s) ® wa,(v) (21)

4.3 Projection and Complementary Projection

Theprojection P; 1., (s™), of a string tuple is defined as

Pj,k7...( <81, vy Sn> ) —def <Sj, Sky - > (22)

It retains only those strings (i.e., tapes) of the tuple &ématspecified by the indicesk, ... € [1,n], and
places them in the specified order. Projection indices caanrda any order and more that once. Thus
the tapes of(") can, e.g., be reversed or duplicated:

Pn,...,l( <81,...,Sn> ) = <Sn,...781> (23)
Piji((s1,---,80) ) = (85,85,5;) (24)

The weight of thex-tuple s(™ is not modified by the projection (if we consid€f”) not as a member of
a relation).
The projection of am-tape relation is the projection of all its string tuples:

Pk (RM) =gt (0™ | IsWeRMW AP, (sM)=0M)} (25)

The weight of each(™ € P; ;. (R™) is the collection (semiring sum) of the weights of eath ¢
R (") leading, when projected, td™):

wv™) =g @ w(s™) (26)

s(n) ‘ 'ij, (s(n)):v(m)

The complementary projectioﬂ_Dj,kv___(s(")), of a stringn-tuple s removes all those strings (i.e.,
tapes) of the tuple that are specified by the indigds ... € [1,n], and preserves all other strings in
their original ordet It is defined as

Pj7k‘,...( <817 .- '>Sn> ) —def < <3 85—158j4+1y -5 Sk—15Sk+15 - - > (27)

Contrary to other authors, we do not c&I( ) aninverse projectiotbecause it is not the inverse of a projection in the sense:
a="P(B)and8 =P (a).
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Complementary projection indices can occur in any orddrphly once.
The complementary projection of antape relation equals the complementary projection oftall i
string tuples:

Pip. (R =gt (0™ | I eRM AP, (sM)=0M} (28)

The weight of each(™ € P; ;. (R™) is the collection of the weights of easf) € R(™) leading,
when complementary projected, 46™ :

w(®™) =gt & w(s™) (29)

s(") | fj,k (s(")):v(m)

yeen

4.4 Auto-Intersection

We define theauto-intersectiorof a relation,Z; ,(R(™), on the tapeg andk as the subset & (™ that
contains alls(™) with equals; ands:

Ij,k( R(n) ) =def { S(n) ER(H) ’ S5 = Sk } (30)

The weight of any™ € Z; ,,(R(™) is not modified.
For example (Figure 1)

RY = (a,z,€) (by.a) (e,2,) = { (ab*,ay’z,a"b) | keN} (31)
T15RY) = {(ab',ay'z.alt) } (32)

Auto-intersection of regulat-tape relations is not necessarily regular. For examplgufei 3)

RY = (a.ea) (a,0.9) (e.a.2) = {(a"a,aa",aby:") | k,heN}  (33)
27172(72&3)) = {(aka,aak,wkyzk> | keN} (34)

The result is not regular becauskyz* is not regular.

4.5 Multi-Tape and Single-Tape Intersection

The multi-tape intersection of two multi-tape relatioﬂégn) anngm), usesr tapes in each relation,
and intersects them pair-wise. The operation pairs eairfystiple s™ € R{™ with each string tuple
v e RYViff s;, =y, with ji; € [1,n], k; € [1,m] for all i € [1,7]. Multi-tape intersection is defined
as:
Rgn) jlﬂkl Rém) — R(n-l—m—r) (35)
Jk
=dof {u("+m_’”) | Els(")ERgn),Elv(m)ERgm), 85, =k, Ji€[l,n], k;€[l,m],Vie[l,r]

All tapesk; of R§m> that have directly participated in the intersection arerafards equal to the tapes

j; of Rﬁ”), and are removed. All tapes are kept for possible reuse by subsequent operations. df ot
tapes of both relations are preserved without modification.
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The weight of each("+7"—7) ¢ R(tm=) g
w(ul™m ) = w(s™) @ we™) (36)

This weight follows only from pairing (Eg. 11). Itis not inBfaced by complementary projection (Eq. 29)
because any twa("+™ = s():,,(™) that differ invy, also differ ins;,, and hence cannot become equal
when thev,,, are removed.

The multi-tape intersection of two relatiorvgé") andRé’”), can be compiled by

R L R = Prikrrmths (IjT,nJrkr( o T (R XRY™ ) - )) (37)
s by

as can been seen from

R xR = {sMnm | ) ¢ M ym) ¢ R{M 3 (38)
Timets R < RE™Y = {50t | 350 e R 300m ¢ RUY 50 =0 1 (39)
ete.

Multi-tape intersection is a generalization of classicaégisection of transducers which is known to
be not necessarily regular (Rabin and Scott, 1959) :

AP AP = AP 0 AP = Po(Taa(Tia( AP x 4P))) (40)
2,2

Consequently, multi-tape intersection has the same properour approach this results from the poten-
tial non-regularity of auto-intersection (Eq. 37).

We speak abousingle-tape intersectioif only one tape is used in each relation=€ 1). A well-
known special case is the intersection of two acceptorgjjg-automata) leading to an acceptor

A Ay = AP Al = Py Tia( A x4 (41)

and yielding the relation
R(Ag%AgU) = {s | seR(A), seR(A)} (42)
w(s) = wa,(s) ®wa,(s) (43)

Another well-known special case is the composition of tvem&ducers (2-tape automata) leading to
a transducer. Here, we need, however, an additional conepimy projectiorf:

AP 0 AP = Py AP 0 aP) = Pog(Toa( AP x A7) (44)
It yields the relation:
R (Agz) <>Ag2) ) = {u(2) | HS(Z)GR(A?)), EIU(Z)ER(Af)),ngvl,u(Z) :fgg(s@):v(z))} (45)

wu?) = @ wa, (s?) @ wa, (v?) (46)
8(2),0(2) | ur=s1,52=v1,v2=u2
Multi-tape and single-tape intersection are neither daatee nor commutative, except for special
cases with- = n = m, such as the above intersection of acceptors and transducer

2Composition of transducer; is expressed either by theor theo operator. However]; ¢ Ts equalsTy o T: which
corresponds t&'2(T1( ) ) in functional notation (Birkhoff and Bartee, 1970).
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4.6 Transduction

AWMTA, A" can be used as a transducer havirigput tapesy; to j,, andz output tapesk; to k,,
which do not have to be consecutive or disjoint.

To apply A™ to a weighted--tuple of input strings, the tuple”) is converted into an input WMTA,
I, having one single path labeled with) and weighted withw(s()). An output WMTA, O®),
whose relation contains all weighteetuples of output strings;(®), is then obtained through multitape-
intersection and projection:

O = Py, (A 0 100 (47)

Ji,1

Jr,T
5 Example of Classical Transducer Intersection

The following example of classical transducer intersentijgz) andAgz) is regular®

* *
ab caypb € € € C ¢ ﬂ € a be c
e A B e C ABC«e¢ A 1,1 A B e CA
2,2
It has one theoretical solution which is
ab(cab)lEEECE abcabce e(abac)z

cA\BesC) ABCce A ABCABCA A \BeCA

This solution cannot be compiled with any of the above maeiibprevious approaches (Section 2).
It cannot be enabled by any pre-transformation of the WMTiet does not change their relations,

R(Af)) andR(Agz)). All above mentioned approaches do not exceed the followitegnatives.

5.1 First Failing Alternative

One can start by typing all symbols (anpwith respect to the tapes, to make the alphabets of differen
tapes disjoint (which can be omitted for symbols occurringpoe tape only) :

* *
a b c ab €1 €1 €1 C ¢1 A €1 a b g c
g9 A B & C ABC & A 1,1 A B & CA
2,2
Then, one converts tapes intal tape, such that each transition, labeled witlymbols, is transformed
into a sequence of transitions, labeled witth symbol each, which is equivalent to Ganchev’s approach

(Ganchev, Mihov, and Schulz, 2003) :
*

*
aceb A (C Baesb C) e1AeiBeiCcestA N A (a BbeyeiCce A)

After these transformations, it is not possible to obtamahove theoretical solution by means of classi-
cal intersection of 1-tape automata, even not aftesmoval:

abA(cBabC)*ABCcA N A(aBchA)*

3For sake of space and clarity we represent all regular esjoresin this section in a special form where each tape appear
on a different row and symbols of the same transition arecadly aligned. Note that it is not a matrix representatidfore
conventionaIIyAf) could be written as(a, €) (b, A) ( {c, B){a,e){b,C) )" (g, A){e, B) (e, C){c,e)(e, A).
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5.2 Second Failing Alternative

Alternatively, one could start with synchronizing the WMJA This is not possible across a whole
WMTA, but only within “limited sections”: in our example thimeans before, inside, and after the
cycles:

* *
a b c ab C e ¢ ¢ m € a b c
A e B C ¢ ABCA 1,1 A B CA
2,2
Then, one can proceed as before by first typing the symbotsrespect to the tapes
* *
a b cawb C ¢ 61 €1 m er {a b c
A g5 \ B C g9 ABCA 1,1 A B CA
2,2

and then transforming tapes intol tape
*

aAbag(c BaCbsg)*cA51851C51A N ElA(a BbCCQ

The solution cannot be compiled with this alternative &jtbeen not aftee-removal:
*

aAb (cBaCb) c ABCA n A(aBchA)*

5.3 Solution with Our Approach

To compile multi-tape intersection according to the abaweedure (Eq. 37)

AD = AP 0 AP = Py (Tou( Tis( AP x AP ))) (48)

1,1
2,2

we proceed in 3 steps. First, we compﬂéﬁ‘) = Il,g(A?) X A§2)) in one single step with an algo-
rithm that follows the principle of transducer compositemd simulates the behaviour of Mohriilter

(Section 6.3). For the above example, we obtain
*

e a b e €c a b € € € C ¢
e ¢ A e B ¢ C A B C ¢ A
e a b e € a b E € € € ¢
A B ¢ C A B ¢ C e e A =

Next, we compileBéA‘) = 12,4(B§4)) using our auto-intersection algorithm (Section 6.2)

e a b e € a b 1 E € € € ¢
e ¢ A e B ¢ C A B C ¢ A
e a b e € a b E € € € ¢
A B ¢ C A B ¢ C e ¢ A =

4Composition withe-filter has been shown to work on arbitrary transducers (Métareira, and Riley, 1998).
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and finally, A?) = P3 4( B§4) ) with a simple algorithm for complementary projection:

E&b(EC&b)lEEEC

€
e ¢ A e B e C A B C ¢ A

This final result equals the theoretical solution.

6 Algorithms

In this section we propose and recall algorithms for the eldefined operations on WMTAS: cross-
product, auto-intersection, single-tape and multi-tagersection. By convention, our WMTAS have
only one initial state € I, without loss of generality, since for any WMTA with multginitial states
there exists a WMTA with a single initial state accepting shene relation.

We will use the following variables and definitions. The wadtesv[q], 1[q], etc. serve for assigning
temporarily additional data to a state

Aj = (¥;,Qj,%;, F;, E;,K;)  Original weighted automaton from which we will constructemn
weighted automaton

A =(3,Q,i, F,E,K) New weighted automaton resulting from a construction

viq] =q Stateg; of an original automator; assigned to a stateof a new
automatond

1lq] =(q1,92) pair of states(qi, ¢2) of two original automataA; and A,, as-
signed to a state of a new automatont

Iq] = (q1,492,9:) triple of states belonging to the two original automata,and A,,

and to a simulated filter automatoA;, respectively; assigned to a
stateq of a new automatont

3 = (s,u) Pair of “leftover” substringgs, u) assigned to a statgof a new
automaton4

i(s,u) = |s|—|ul Delay between two string (or leftover substringspnd u. For
example:d(£[q]) also written a9 (q)

x|q] = (x1,Xx2) Pair of integers assigned to a statexpressing the lengths of two
stringss andw on different tapes of the same path ending at

lcp(s, ') Longest common prefix of the stringsands’

Uik,..(€) =Pjr,..(Le)) Short-hand notation for the projection of the labekof

6.1 Cross Product

We describe two alternative algorithms to compile the cpmedguct of two WMTAS,A&") andAgm). The
second algorithm is almost identical to classical algamgifor crossproduct of automata. Nevertheless,
we recall it to make this report more complete and self-stend

6.1.1 Conditions

Both algorithms require the semirings of the two originalomata,Agn) and Aém), to be equal ; =
K>). The second algorithm requires the common semiking/C; = K, to be commutative.
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6.1.2 Algorithms

Cross product through path concatenation: The first algorithm pairs the label of each transition
e1 € By with e (producing/(e;) : e™), and the label of each transitien € £, with £ (producing
(™ :¢(e,)), and then concatenate” ™ with AL ™) We will refer to it as ®osPC(A4y, A5) where
the suffixPC stands foipath concatenation

CrosPCA™ Al™) - 4

1 A<—<ElUEQ,QlUQQ,il,FQ,ElUEQ,K1>
2 forVe, € E; do

3 ((e1) — L(ep):e™
4  forVey; € 5 do

5 Ueg) «— ™ :4(ey)
6 forvge Fy do

7 E—EU{ (g,e""™) 0(q),i2) }
8

9

o(q) +0
return A

We start with a WMTAA that is equipped with the union of the alphabets, the uniothefstate
sets, and the union of the transition setsdgfand A,. The initial state ofd equals thatd,, its set of
final states equals that of,, and its semiring equals those df and A, (Line 1). First, we (post-)
pair the labels of all transitions originally coming frory with (™, and (pre-) pair the labels of all
transition from4, with (™. Then, we connect all final states .4f with the initial state of4 through
e(n+m)_transitions, as is usually done in the concatenation afraata.

The disadvantages of this algorithm are that the path$ bécome longer than in the second algo-
rithm below and that each transition dfis partially labeled witlz, which may increase the running time
of subsequently applied operations.

To adapt this algorithm to non-weighted MTAS, one has to neribe weight from Line 7 and re-
place Line 8 with:F'inal(q) « false

Cross product through path alignment: The second algorithm pairs each string tupletlé?f) with
each string tuple ofi{"™, following the definition (Eq. 18). The algorithm actuallgips each pathr

of Aﬁ”) with each pathr, of Agm) transition-wise, and appenedransitions to the shorter of two paired
paths, so that both have equal length. We will refer to thim@thm as QosPA(A,, As) where the
suffix PA stands foipath alignment

We start with a WMTAA whose alphabet is the union of the alphabetd pnd A, whose semiring
equals those ofi; and A, and that is otherwise empty (Line 1). First, we create tlit@lrstate: of
A from the initial states ofd; and A5, and push onto the stack (Lines 3, 20-26). While the stack is
not empty, we take statesfrom it and access the states andg- that are assigned t@ through u[q]
(Lines 4, 5).
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CrosPA(A™, A1) - A

1 A— (31U, @, L, &, &, K1)

2  Stack — @

3 i+ GETSTATE(iy,i2)

4 while Stack # ¢ do

5 q « pop(Stack) : plg] = (q1,q2)

6 if gL A ge#FL

7 then for Ve; € E(q1) do

8 for Ves € E(q2) do

9 q' < GETSTATE(n(e1 ), n(e2))

10 ) E—EU{{q, lle1):l(e2), w(er) @ wlez), ¢') }
11 if 0(q1)#0 V q1=1

12 then for Vey € E(q2) do

13 q' «— GETSTATE(L,n(e2))

14 . E<EU{{(qg e l(e2), o(q1) ®wlea), ') }
15 if o(q2)#0 V ga=1

16 then for Ve; € E(q;) do

17 q' < GETSTATE(n(ey), L)

18 E— EU{ (g, l(er):e", w(er) ® 0(ga), ¢) }
19 return A

GETSTATE(q1,q2) — q :
20 if 3¢ €Q:uld] = (q1,92)

21 then ¢ «+ ¢

22 else Q@ — QU {q} [create new state]
23 0(q) «— o(q1) ® o(q2)

24 plg) < (q1,92)

25 push{Stack, q)

26 returngqg

If both ¢; and g, are defined# L), we pair each outgoing transitian of ¢; with each outgoing
transitione, of g2 (Lines 6—8), and create a transitionAn(Line 10) whose label is the paife;) : ¢(e2)
and whose target corresponds to the tuple of targéis(e; ), n(ez)) (Line 9). If ¢’ does not exist yet, it
is created and pushed onto the stack (Lines 20—26).

If we encounter a final statg (with o(q1) #0) in Ay, we follow the path beyong, on ane-transition
that exists only “virtually” but not “physically” ind; (Lines 11, 12). The target of the resulting transition
in A corresponds to the tuple of targeig(e; ), n(e2)) with n(e; ) being undefined= L) because; does
not exist physically (Line 13). If we encounter a final st@téwith o(q2) #0) in A3, we proceed similarly
(Lines 15-18).

The final weight of an undefined state= | is assumed to be: o( L) =1 .

To adapt this algorithm to non-weighted MTASs, one has to nesribe weights from the Lines 10, 14,
and 18, and replace Line 23 witkinal(q) < Final(q1) A Final(qs).
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6.2 Auto-Intersection

We propose an algorithm that attempts to constructs theiatersectiond (™ of a WMTA A§”>. Our ap-
proach has some minor similarity with synchronization atpos for transducers (Frougny and Sakaro-
vitch, 1993; Mohri, 2003) : it uses the concept of delay bemvivo tapes and assigns leftover-strings
to states (see above).

In the context of our approach, we understandcbystructionthe compilation of reachable states
¢ and transitions:(™) of A, such that the absolute value of the debdy), regarding tapg andk,
does not exceed a limdt,..2 at any statey, i.e.:Vq : [6(¢)| < dmax2 A g reachable. The limit .52 IS
imposed, i.e., any state whose delay would exceed it is nuttoacted.

We distinguish two cases. In the first case, the delay of ndrtbeoreachable and coreachable
states exceeds a limifyx  (With dpax < dmax2), 1.€.0 49 : Omax < [0(¢)| < dmax2 A ¢ reachable A
q coreachable. We call it a construction witlbounded delayr a successfuktonstruction because it
is guarantied to generate the attempted redéit = 7, ,(A{"). In this case the relatiof; ,(A\")
has bounded delay, too, and is rationalhe limit 6,,.x iS Not imposed, i.e., any statewhose delay
exceeds it would still be constructed (which places the ttoation into the second casedfbecomes
coreachable).

In the second case, the delay of reachable and coreachatds istpotentially unbounded. It exceeds
dmax, and would actually exceed any limit if it was not (bruteefey delimited by ,.x2, 1.€.: 3¢ : Omax <
[0(q)] < dmax2 A q reachable A g coreachable. We call this a construction withotentially unbounded
delay It is not successful, and we cannot conclude on the comsstof the resuld™ and on the
boundedness and rationality of the reIatiQr,)C(Agn)).

We will first describe the algorithm and then present somengskas for further illustration.

6.2.1 Algorithm

Our algorithm starts with the compilation of the limits.,. andd.,ax2, then proceeds with the construc-
tion of A, and finally verifies the success of the construction, adegr the above conditions.

Compilation of limits:  First, we traverseélg") recursively, without traversing any state more than

once, and record three value%;m, being the maximal delay at any state,;,,, the minimal delay at
any state, anﬁcyc, the maximal absolute value of the delay of any cycle (Line837). To do so, we
assign to each statg of AYL) a variablex|[q1] = (x1, x2) with the above defined meaning. The delay at
a stateg; is (q1) = x1— x2 (Lines 8, 9). The delay of a cycle ap is the difference betweedi(q; ) at
the end and(q;) at the beginning of the cycle (Line 11).

Then, we compile.,., the maximal absolute value of delay required to match amydycles. For
example, IetR(A&Q)) = ({{aa,e)} U{(e,aaa)})", encoded by two cycles. To obtain a match between
01 () andls(r) of a pathr of A® C 71 5(A'?)), we have to traverse the first cycle 3 times and the second
two times, allowing for any permutatiod® = ((aa, £)? (e, aaa)? U (aa, €)% (e, aaa)?(aa, )’ U .. .)*.

This illustrates that in a match between any two cycleﬂfﬁ?, the absolute value of the delay does not
exceed,,. = Acyc-max( 1, gcyc— 1) (Line 4).

°A rational relation is a weighted regular relation.
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GETMAXDELAYS(A1, j, k) — (Omaz Omaz2)

1 for Vg, € Q; do

2 Xl] =L

3 (bmaz mm,écyc) — MAX DEL(i1, 4, k, (0,0), (0,0,0))
4 Seye — 5cyc mazx (1, 5cyc 1)

5 5ma:v — maz(écyc s ZS\mam_zs\min)

6 Omaz2 < 5max+5cyc
7 return (Omaz 5 Omaz2)

MAX [/)\EL(QI 23y ks (X/1> X/2) (5;77,(1;1:7 (xmnv 5éyc)) - (5mam> Omin, 5cyc) :
8 émax — ma)((simm s Xl X2)
9 Omin mln(éﬁnm s X/l_X/2)

10 if x[¢] = (Xl, x2) # L [cycle end reached]

11 then 601/0 — ma)((scyc ) ’ (Xll_X/2) - (Xl_XZ) D

12 else &[ql] (X1, x5)

13 Seye < Opye

14 for Ve € E(ql) do

15 (6max75mzn75cyc) — MAXDEL(”( ) (X1+M ( )‘7X/2+‘£k(e)‘)7

(gmamy 5m2n> 5cyc))
16 Xlq1] < L

o~

17 return (5max, Omins gcyc)

Next, we compile the first limit),,.., that will not be exceeded by a constructlon W|th bounded
delay. In a match of two cycles this limit equals,., and for any other match it |$nm Omim- 1IN
a construction with bounded delay, the absolute value ofitiay in A™ does therefore not exceed
Omaz = Max(Ocye 5 Omaz —Omin) (LiN€ 5).

Finally, we compile a second limib,,, .2, that allows us, in case of potentially unbounded delay, to
construct a largeA(™ thand,,,, does. Unboundedness can only result from matching cyclﬂgbl)n To

obtain a largerd(™, with states whose delay excee¥is.., we have to unroll the cycles 0{5”) further
until we reach (at least) one more match between two cyclestefore 6,422 = dmaz +0cyc (LiN€ 6).

Construction: We start with a WMTAA whose alphabet and semiring equal thoselpfand that
is otherwise empty (Line 2). To each statehat will be created in4, we will assign two variables:
v[q]= ¢ indicating the corresponding statgin A;, and¢[q] = (s, u) stating the leftover string of tape
j (yet unmatched in tapk) and the leftover string of tapek (yet unmatched in tapg.

Then, we create an initial staiean A and push it onto the stack (Lines 4, 18-27). As long as the
stack is not empty, we take staigfrom it and follow each of the outgoing transitioasc £(q; ) of the
corresponding statg = v[q] in A; (Lines 5-7). A transitiore; in A, is represented asc F(q) in A,
with the same label and weight. To compile the leftover gsifi¢'| = (s', v’) of its targety’ =n(e) in A,
we concatenate the leftover stringjg| = (s, u) of its sourceg = p(e) with the j-th andk-th component
of its label,?;(e1) and/j(e;1), and remove the longest common prefix of the resulting strng;(e;)
andu - ¢(eq) (Lines 8, 14-17).
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AUTOINTERSECT A4, j, k) — (A, boolean) :

(Omax; Omax2) < GETMAXDELAYS(A1, j, k)

A — <217 QS?J—a ¢7 ¢7K1>

Stack — @

i < GETSTATE(i1, (¢, ¢€))

while Stack # ¢ do
q < pop(Stack) : v[q] = q1,¢[q] = (s,u)
for Ve, € E(ql) do

© oo ~NOOOULhA, WNBE

(¢',u") < CREATELEFTOVERSTRINGS(s, ¢; (€1), u, {x(e1))
if (f=evu =¢c) A (|0(s,u)] < Omax2)
then ¢’ — GETSTATE(n(eq), (s',u))
E—FEU { <q7€(61),’w(61),q/> }

successful «— ( Ag€Q : |0(£[q])| > Omax A coreachable(q) )
return ( A, successful )

CREATELEFTOVERSTRINGS(sg, S1, ug, u1) — (s,u) :

14
15
16
17

S < 50 S1
U <~ Ug Up

x — lep(s, u)

return (z~

Vs z7tu)

GETSTATE(q1, (s',u')) — ¢ :
if 3¢ €Q:vlg]=a A Ed]=(su)
then g — ¢
else Q@ — QU {q} [create new state]

18
19
20
21
22
23
24
25
26
27

return g

if s=e ANu=c¢
then o(q) — o(q1)
else o(q) <0
vigl <= a1
Ela] — (s, )
push{Stack, q)

If both leftover stringss’ and’ of ¢’ are non-empty=££) then they are incompatible and the path
that we are following is invalid. If eithes’ or v’ is empty & ¢) then the current path is valid (at least up

18

to this point) (Line 9). Only in this case and only if the delastweens’ andu’ does not exceed, .2,
we construct a transitioa in A corresponding te; in A; (Line 9, 11). If its targety’ = n(e) does not
exist yet, it is created and pushed onto the stack (Lines 8827). The infinite unrolling of cycles is

prevented by, .xo.

Verification: To see whether the construction was successful and whetfier= Ijvk(Agn)), we
have to check for the above defined conditions. Since akstatA(™ are reachable, it is sufficient to

verify their delay and coreachability (Line 12}g : [6(q)| > dmax A ¢ coreachable.
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6.2.2 Examples

We illustrate the algorithm through the following three mdes that stand each for a different class of
WMTAS.

Example 1: The relation of the WMTAA(3), of the first example is the infinite set of string tuples
{(ab¥, 2y 2, a*b)|k € N} (Figure 1). Only one of those tuples, naméiy, vy, ab), is in the relation
of the auto-intersectiond®) = 11,3(A§3>), because all other tuples contain different strings on flape
and3. In the construction, an infinite unrolling of the cycle ispented by the incompatibility of the
leftover substrings i§[3] and{[4] respectively. The construction is successful.

The example is characterized by:

5max = 5max2 = 1 (49)
RAPY = {(ab*,zyF 2, a"b) | k € N} (50)
Tia(R(A)) = R(A®) = {(ab',zy'z,a'b)} (51)
AqeQ : |0(&[q])] > Omax = successful = rational I; 3( ) (52)
=0
@ E\):(g,g)
A(3) a:x:elwg 3) - 1
1 b:y:a/w, A o (b,s)b_y_a/ ¢=(bb,a
Y. Y. 1,
1 v=1 (1 ———= 2" = 3
/plC><> E=(ae)
&:2:biw, &:z:biw,
Y.

C_z)/p2 Ei?é,b)‘(f‘) E:(s.e)/pz

Figure 1: A WMTA A§3) and its successfully constructed auto-intersectioh = Il,g(Af’)).
(Dashed parts are not constructed.)

Example 2: In the second example (Figure 2), the relationélé‘?f) is the infinite set of string tuples
{{a* a,z"y) | k € N}. Only one of those tuples, name{y', a,z'y), is in the relation of the auto-
intersectionA®) = 11,2(A§3>). In the construction, an infinite unrolling of the cycle iepented by
the limit of delayd.,.x2. Although the result contains states witf¢[q])| > Omax, None of them is
coreachable (and would disappear if the result was prufda.construction is successful.

The example is characterized by:

Omax = 2 (53)

Omax2 = 93 (54)

R(AY) = {{a*, a,2"y) | k € N} (55)

Tip(R(AY) = R(A®) = {(a},a,a'y)} (56)

AqeQ : |0(&[q])| > Omax A coreachable(q) = successful = rational I 2( ) (57)
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v=0 v=0 v=0 v=0 v=0
ae:x/wy E=(g.€) &=(ag) ¢=(aas) ¢=(aaas) &= (aaaas)
aeX/wo T agx/wg 1 agix/wg ag:x/wg -
A3) 1 2 3/
&) A
Ay |sayw, gay/w, cay/w, eay/w, caylw,

/pl v=1 v= v=1 v=1 e
£=(c.a) £=(c. s)@ fps E=(a.e £=(aa.g)

Figure 2: A WMTA Ag?’) and its successfully constructed auto-intersection’ = Il,g(Af’)).
(Dashed parts are not constructed. Statesrked withe have|§(£[q])| > Omax-)

Example 3: In the third example (Figure 3), the relation Aﬁg) is the infinite set of string tuples
{(aFa,aa”, zFyzh) | k,h € N}. The auto-intersectionf; »(A'™), is not rational and has unbounded
delay. Its complete construction would require an infinitealling of the cycles ot4§3) and an infinite
number of states ill(®) which is prevented by,..x2. The construction is not successful because the
result contains coreachable states Witfg])| > dmax-

The example is characterized by:

Omaxe = 2 (58)
5max2 = 3 (59)
R(Agg)) = {(d*a,aa”, zFyz") | k,h € N} (60)
T12(R(AY) = {(d"a,ad® a*y:F) | k € N} (61)
Tia(R(A) o R(AD) = {(aba,aa,aby") [k e [0,3]}  (62)
g€ : 16(&[q])| > dmax A coreachable(q) = not successful (63)
v=0 v=0 v=0 v=0 v=0
aze:x wg &=(e.€) &=(a.e) &=(aa.e) ¢=(aaae) &= (aaaas)
T (i e ey g g
A \\\7',/
A(f) aayiw, a:alyiw, a:aryliw, a:aylw, a:aylw,
~_Eraiziw, ca:ziw, ga:ziw,
v=1 (5 6 7
RONIPIICIO O e O
c:a:ziw, &=(ae) &=(aag) ¢=(aaae)
ga:ziw,
ga:ziw ga:ziw caziw,
v=1 g\ 2 @ 2 11 2 12/,
E:(S,a) v=1 v=1 = V 1
£=(s.aa) £=(s.aaa £=(s.aaaa

Figure 3: A WMTA Ag?’) and its partially constructed auto-intersectidh® Il,g(Af’)).
(Dashed parts are not constructed. Statemrked withs have|d(£[q])| > dmax-)
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6.3 Single-Tape Intersection

We propose an algorithm that performs single-tape intémeof two WMTAS, A&") and Agm), in

one step. Instead of first building the cross—produﬁff) X Agm), and then deleting most of its paths
by auto-intersectionZ; ,.4( ), according to the above procedure (Eq. 37), the algorithnstrocts
only the useful part of the cross-product. It is very similarclassical composition of two trans-
ducers, and incorporates the idea of usingediiter in the composition of transducers containigg
transitions (Mohri, Pereira, and Riley, 1998, Figure 1@ttill be explained below. Instead of ex-
plicitly using ane-filter, we simulate its behaviour in the algorithm. We wifer to the algorithm as
INTERSECTCROSEPY A1, Ao, j, k):

INTERSECTCROSEPY A1, As,j, k) = Zjnii( Aﬁ”) X A;m> ) (64)

A&") QCAS”) = Puikr (INTERSECTCROSH Ay, Ao, 75, k) ) (65)
J7

The complementary projectiof®,,+( ), could be easily integrated into the algorithm in order toidv
an additional pass. We keep it apart becanseERSECTCROSEPY ) serves also as a building block of
another algorithm where this projection must be postponed.

6.3.1 Mohri's e-Filter

To compose two transducemf) andAgz) , containings-transitions, Mohri, Pereira, and Riley (1998,
Figure 10) are using astfilter transducer. In their approach,gz) andAgz) are pre-processed (Figure 4) :
eache on tape 2 ongz) is replaced by an; and eaclz on tape 1 ongz) by ane,. In addition, a looping
transition labeled with : ¢, is added to each state df®, and a loop labeled with, : « to each state of
Af). The pre-processed transducers are then composed Witlitehelﬁz) in between:A4; ¢ A, ¢ As.

A €.
€ 1 X2 @ 81:([)2
X
51352<>

0 @€
e e
A ) xe, A, N €51X

Figure 4: Mohri'se-filter A. and two transducersi; and As, pre-processed for filtered compo-
sition. = = —{¢1, P2,e1,£2}. (For didactic reasons we are using slightly different latthan
Mobhri et al).

The filter controls howe-transitions are composed along each pair of path iand A, respectively.
As long as there are equal symbatsof not) on the two paths, they are composed with each other and
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we stay in state 0 ofi.. If we encounter a sequenceofn A; but not in Ay, we move forward indy,
stay in the same state i, and in state 1 ofd.. If we encounter a sequence ©in A, but not in Ay,
we move forward ind,, stay in the same state iy, and in state 2 ofl..

6.3.2 Conditions

Our algorithm requires the semirings of the two WMTAs to bead/C; = K,) and commutative. All
transitions must be labeled withtuples of strings not exceeding length 1 on the interset@pds; of
A; andk of A, which means no loss of generalitye; € £y : |[j(e1)] < 1; Vea € Fy : |[i(e2)| < 1

6.3.3 Algorithm

We start with a WMTAA whose alphabet is the union of the alphabetsipfand A5, whose semiring
equals those afi; and A,, and that is otherwise empty (Line 1).

INTERSEC1CR03£PS(A§”) , Agm),j, k) — A:

1 A—(31UX9, 8, L, &, &, K1)

2  Stack — @

3 i+ GETSTATE(iy,i2,0)

4 while Stack # ¢ do

5 q < pop(Stack) : Vq] = (q1, g2, ¢¢)

6 for Ve; € E(q1) do

7 for Ves € E(q2) do

8 if Ej(ﬁl)sz(EQ) AN (quo V Ej(el)#z—:)

9 then ¢ «— GETSTATE(n(e1), n(ez),0)
10 E— FEU{{q, le1):l(e), w(er) @ wles), ¢) }
11 for Ve; € E(q1) do

12 if ¢j(e1)=¢ N q-€{0,1}

13 then ¢’ < GETSTATE(n(eq), g2, 1)

14 E—EU{{q, le):e"™ w(e), ¢)}
15 for Ve, € E(q2) do

16 if lp(ea)=e A q-€{0,2}

17 then ¢’ — GETSTATE(q1, n(e2), 2)

18 E—EU{{q, e™:l(es), w(ea), ¢) }
19 return A

GETSTATE(q1,¢2,¢:) — ¢ -
20 if 3¢ € Q: 9] = (q1,q2,q)

21 then ¢ «— ¢

22 else Q@ — QU {q} [create new state]
23 0(q) «— o(q1) ® o(q2)

24 Ig] — (91,92, q-)

25 push{Stack, q)

26 returngqg
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First, we create the initial stateof A from the initial states ofd,, A, andA., and push onto the
stack (Lines 3, 20—26). While the stack is not empty, we tékiesg from it and access the states ¢o,
andg. that are assigned tpthrough#[q] (Lines 4, 5).

We intersect each outgoing transitien of ¢; with each outgoing transition, of ¢, (Lines 6, 7).
This succeeds only if thgth label component of; equals the:-th label component of,, wherej and
k are the two intersected tapesAf and A, respectively, and if the corresponding transitiondinhas
target O (Line 8). Only if it succeeds, we create a transito (Line 10) whose label results from
pairing /(e ) with £(e2) and whose target corresponds with the triple of targets(e;), n(e2),0). If ¢’
does not exist yet, it is created and pushed onto the stankgl20-26).

Subsequently, we handle altransitions inA; (Lines 11-14) and i, (Lines 15-18). If we en-
counter are in A; and are in state 0 or 1 of., we have to move forward id, stay in the same state in
A,, and go to state 1 inl.. Therefore we create a transitionihwhose target corresponds to the triple
(n(e1),q2,1) (Lines 11-14). The algorithm works similarly if ands encountered ial; (Lines 15-18).

To adapt this algorithm to non-weighted MTAS, one has to nabe weights from the Lines 10, 14,
and 18, and replace Line 23 wittinal(q) < Final(q1) A Final(gz).

6.4 Multi-Tape Intersection

We propose two alternative algorithms for the multi-tagersection of two WMTAsA&") andAé’”).

6.4.1 Conditions

Both algorithms work under the conditions of their undertyibasic operations: The semirings of the
two WMTAs must be equalk(; = K2) and commutative. The second (more efficient algorithmjireg

all transitions to be labeled with-tuples of strings not exceeding length 1 on (at least) onegfa
intersected tapeg of Aﬁ”) andk; of Agm) which means no loss of generalityli € [1,7] : (Ve; € Ey :
[i(e) S 1) A (Ve € By [Up,(e2)] < 1)

6.4.2 Algorithms

Our first algorithm, that we will refer to aSNII'ERSEC'Ii(Ag") ) Aém),jl .o Jry k1 ... k), follows the ex-
act procedure of multi-tape intersection (Eq. 37), usimgatigorithms for cross product, auto-intersection,
and complementary projection.

INTERSEC11(A§”) , Agm),jl o g k1 . k) — (A, boolean) :
1 successful « true

2 A« CrosPAU™, A™M)

3 forVie[l,r] do

4 (A, success) < AUTOINTERSECTA, j;,n + k;)

5 successful < successful N\ success

6 A — Pn—l—kl, ,n+k7-(A)

7 return (A, successful)

The second (more efficient) algorithm, that we will calitersec2(4™, AT™ 5y .. g ky .. k),
uses first the above single-tape intersection algorithnetiopm cross product and one auto-intersection
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in one single step (for intersecting tapewith k1), and then the auto-intersection algorithm (for inter-
secting all remaining tapes with &;, fori > 1).

INTERSEC'IZ(Agn) , Agm),jl o g k1 . k) — (A, boolean) :
1 successful « true

2 A |NTERSECTCROSSEPS(A§"> , Agm),jl, k1)

3 forVie[2,r] do

4 (A, success) < AUTOINTERSECTA, j;,n + k;)

5 successful < successful N\ success

6 A — Pn—l—kl, ,n+k7-(A)

7  return (A, successful)

This second algorithm has been used to compile succes#fiellgxample of transducer intersection
in Section 5.

7 Applications

Many applications of WMTAs and WMTA operations are possilsiech as the morphological analysis
of Semitic languages or the extraction of words from a liflial dictionary that have equal meaning and
similar form in the two languages (cognates).

We include only one example in this report, namely the pregiem of intermediate results in trans-
duction cascades, which actually stands for a large claapmiications.

7.1 Preserving Intermediate Transduction Results

Transduction cascades have been extensively used in igmgua speech processing (Ait-Mokhtar and
Chanod, 1997; Pereira and Riley, 1997; Kempe, 2000; KumerBamne, 2003; Kempe et al., 2003,
among many others).

In a (classical) weighted transduction cascdq(é), . T}z), a set of weighted input strings, encoded
as a weighted acceptdls(()l), is composed with the first transducﬁf,z), on its input tape (Figure 5). The
output projection of this composition is the first internegdi result,Lgl), of the cascade. It is further
composed with the second transdud?—é(ﬁ), which leads to the second intermediate resﬂ.ﬁi?, etc. The
output projection of the last transducer is the final resﬂiﬁ), :

LY = Py o1?) for i€ [1,7] (66)

At any point in the cascade, previous results cannot be sedesThis holds also if the cascade is
composed into a single transduc&f?). None of the “incorporated” sub-relationsii?) can refer to a
sub-relation other than its immediate predecessor:

7@ = 76 oT® (67)

In a weighted transduction cascadé,"l) o Aﬁ”r), that uses WMTAs and multi-tape intersection,
intermediate results can be preserved and used by all sudrseiansductions. Suppose, we want to use
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) 2) (2
T T T
L%) 1 L(i) 2 |_(rl_)1 r L(rl)

D /-tape 1 D /-tape o /-tape 1 D
mpe2 " ez T e 2T

Figure 5: Weighted transduction cascade (classical)

the two previous results at each point in the cascade (extdipe first transduction) which requires all
intermediate resultsLEQ), to have two tapes (Figure 6) : The projection of the outppetof the last
WMTA is the final resultLSl) :

1P = L) naP (68)
Lz('Z) = Pasl ng)l ) Agg)) for i€ [2,r-1] (69)
2
L0 = Py(L? n AY) (70)
22
) 3) 3
A A 2 A
L%) ! LD 2 L(r—)l r L(rl !

e e
D//D// """ D/ D
e 3T

Figure 6: Weighted transduction cascade using multi-taggsection (Example 1)

This augmented descriptive power is also available if theleslsascade is intersected into a single
WMTA, A®) | althoughA® has only two tapes in our example. This can be achieved bysgteng
iteratively the first WMTAS until i reaches- :

AP = P AT 0 A7) for ie2r], me{23}  (71)
WL,é
EachAf’.).i contains all WMTAs fromAgz) to A§3>. The final resultd® is built from Af’_)_r :
AP =P (A ) (72)

Each (except the first) of the “incorporated” multi-tape -selations inA? will still refer to its two
predecessors.
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In our second example of a WMTA cascadfég,”l) ... A"™) each WMTA uses the output of its
immediate predecessor, as in a classical cascade (Figuire &jdition, the last WMTA uses the output
of the first one:

L = 1y’ n 4P (73)
1P = Pia(LZ 0 A?) for i€ [2,r1] (74)
LY = py(L? n A®) (75)
22
2) 2) 3)
1 A 2 A 2 2 A 1

" e 1]
I S i
Cape 2 T ez —

Figure 7: Weighted transduction cascade using WMTAs (Exar2p

As in the previous example, the cascade can be intersedted Bingle WMTA,A®?) | that exceeds
the power of a classical transducer cascade, although dritggwo tapes:
AP = (AP A for i€ [2,r1] (76)
AP, = Pa(AR, L 0 AP) (77)
2,2

AD = pa? ) (78)
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