
WFSC – A New Weighted Finite State Compiler

André Kempe1, Christof Baeijs1, Tamás Gaál1

Franck Guingne1,2, Florent Nicart1,2

1 Xerox Research Centre Europe – Grenoble Laboratory
6 chemin de Maupertuis – 38240 Meylan – France

firstname.lastname@xrce.xerox.com – http://www.xrce.xerox.com

2 Laboratoire d’Informatique Fondamentale et Appliquée de Rouen
Faculté des Sciences et des Techniques – Université de Rouen

76821 Mont-Saint-Aignan – France
firstname.lastname@dir.univ-rouen.fr – http://www.univ-rouen.fr/LIFAR/

Abstract. This article presents a new tool, WFSC, for creating, ma-
nipulating, and applying weighted finite state automata. It inherits some
powerful features from Xerox’s non-weighted XFST tool and represents a
continuation of Xerox’s work in the field of finite state automata over two
decades. The design is generic: algorithms work on abstract components
of automata and on a generic abstract semiring, and are independent
of their concrete realizations. Applications can access WFSC’s functions
through an API or create automata through an end-user interface, ei-
ther from an enumeration of their states and transitions or from rational
expressions.

1 Introduction

Finite state automata (FSAs) are mathematically well defined and offer many
practical advantages. They allow for fast processing of input data and are eas-
ily modifiable and combinable by well defined operations. Therefore, FSAs are
widely used in Natural Language Processing (NLP) (Kaplan and Kay, 1981;
Koskenniemi, Tapanainen, and Voutilainen, 1992; Sproat, 1992; Karttunen et al.,
1997; Mohri, 1997; Roche and Schabes, 1997; Sproat, 2000) and in many other
fields. There are several toolkits that support the creation and use of FSAs, such
as XFST (Karttunen et al., 1996-2003; Beesley and Karttunen, 2003), FSA Util-
ities (van Noord, 2000), FIRE Lite (Watson, 1994), INTEX (Silberztein, 1999),
and many more.

Weighted finite state automata (WFSAs) combine the advantages of ordinary
FSAs with those of statistical models, such as Hidden Markov Models (HMMs),
and hence have a potentially wider scope of application than FSAs. Some toolkits
support the work with WFSAs, such as the pioneering implementation FSM
(Mohri, Pereira, and Riley, 1998), Lextools on top of FSM (Sproat, 2003), and
FSA Utilities (van Noord, 2000).

WFSC (Weighted Finite State Compiler) is our new tool for creating, manip-
ulating, and applying WFSAs. It inherits some powerful features from Xerox’s

non-weighted XFST tool, that are crucial for many practical applications. For
example, the “unknown symbol” allows us to assign the infinite set of all un-
known symbols to a single transition rather than declaring in advance all symbols
that potentially could occur and assigning each of them to a separate transition.
This saves a considerable amount of memory and processing time. Flag diacrit-
ics, another feature proposed by Xerox, can also reduce the size of FSAs. They
are extensively used in the analysis of morphologically rich languages such as
Finnish and Hungarian. WFSC represents a continuation of Xerox’s work in the
field of FSAs, spanning over two decades (Kaplan and Kay, 1981; Karttunen,
Kaplan, and Zaenen, 1992; Karttunen et al., 1996-2003; Beesley and Karttunen,
2003).

This article is structured as follows: Section 2 explains some of the mathemat-
ical background of WFSAs. Section 3 gives an overview of the modular generic
design of WFSC, describing the system architecture (3.1), the central role and
the implementation of sets (3.2), and the approach for programming the algo-
rithms (3.3). Section 4 presents WFSC from the users’ perspective, describing
the end-user interface (4.1) and an example of application (4.2). Section 5 con-
cludes the article.

2 Preliminaries

In this section we recall the basic definitions of our framework: algebraic struc-
tures such as monoid and semiring, as well as weighted automata and transducers
(Eilenberg, 1974; Kuich and Salomaa, 1986).

2.1 Semirings

A monoid consists of a set M , an associative binary operation ◦ on M , and a
neutral element 1̄ such that 1̄ ◦ a = a ◦ 1̄ = a for all a∈M . A monoid is called
commutative iff a ◦ b = b ◦ a for all a, b∈M .

The set K with two binary operations ⊕ and ⊗ and two elements 0̄ and 1̄ is
called a semiring, if it satisfies the following properties:

1. 〈K,⊕, 0̄〉 is a commutative monoid
2. 〈K,⊗, 1̄〉 is a monoid
3. ⊗ is left- and right-distributive over ⊕ :
a⊗ (b⊕ c) = (a⊗ b) ⊕ (a⊗ c) , (a⊕ b) ⊗ c = (a ⊗ c) ⊕ (b⊗ c) , ∀a, b, c∈K

4. 0̄ is an annihilator for ⊗ : 0̄ ⊗ a = a⊗ 0̄ = 0̄ , ∀a∈K

We denote a generic semiring K as 〈K,⊕,⊗, 0̄, 1̄〉.
Some automaton algorithms require semirings to have specific properties. For

example, composition as proposed by (Pereira and Riley, 1997; Mohri, Pereira,
and Riley, 1998) requires a semiring to be commutative, and ε-removal as pro-
posed by (Mohri, 2002) requires it to be k-closed . These properties are defined
as follows:

1. commutativity: a⊗ b = b⊗ a , ∀a, b∈K

2. k-closedness:
k+1⊕
n=0

an =
k⊕

n=0
an , ∀a∈K

The following well-known examples are all commutative semirings:

1. 〈IB,+,×, 0, 1〉: boolean semiring, with IB = {0, 1} and 1 + 1 = 1

2. 〈IN,+,×, 0, 1〉: integer semiring with the usual addition and multiplication

3. 〈IR+,+,×, 0, 1〉: real positive sum times semiring

4. 〈IR
+
, min,+,∞, 0〉: a real tropical semiring where IR

+
denotes IR+ ∪ {∞}

A number of algorithms require semirings to be equipped with an order or
partial order denoted by <K (example in Section 3.3). Each idempotent semiring
K (i.e., ∀a ∈ K : a ⊕ a = a) has a natural partial order defined by a <K b ⇔
a⊕ b = a. In the above examples, the boolean and the real tropical semiring are
idempotent, and hence have a natural partial order.

2.2 Weighted Automata and Transducers

A weighted automaton A over a semiring K is defined by the 6-tuple
〈Σ,Q, I, F, EA,K〉, and a weighted transducer T by the 7-tuple
〈Σ,Ω,Q, I, F, ET ,K〉, where

Σ,Ω are finite alphabets
Q is the finite set of states
I ⊆ Q is the set of initial states
F ⊆ Q is the set of final states
EA ⊆ Q×Σ ∪{ε} ×Q is the set of transitions of A
ET ⊆ Q×Σ ∪{ε} ×Ω ∪{ε} ×Q is the set of transitions of T
K is a semiring

In the following, both automata and transducers will be referred to as net-

works. By convention, our networks have only one initial state i ∈ I without
loss of generality since for any network with multiple start states there exists
a network with a single start state accepting the same language. For any state
q∈Q, we denote by

λ(q) λ : I → K the initial weight function with λ(q)=0̄ , ∀q 6∈I
%(q) % : F → K the final weight function with %(q)=0̄ , ∀q 6∈F

and for any transition e∈E

w(e) w : E → K the weight of e with w(e) 6=0̄ , ∀e∈E
p(e) p : E → Q the source state of e
n(e) n : E → Q the target state of e
a(e) a : E → Σ ∪{ε} ×Ω ∪{ε} the label of e

A path π of length l = |π| is a sequence of transitions e1e2 · · · el such that
n(ei)=p(ei+1) for all i∈ [[1, l−1]]. A path is said to be successful iff p(e1)∈I and
n(el)∈F . For any successful path π, the accepting weight w(π) is given by

w(π) = λ(p(e1)) ⊗

⊗

j=[[1,l]]

w (ej)

⊗ %(n (el)) (1)

We denote by Π(s) the set of successful paths for the input string s. Thus,
the accepting weight for any input string s is defined by

w(s) =
⊕

π∈Π(s)

w(π) (2)

Composition of transducers Ti is expressed either by the � or the ◦ operator.
However, T1�T2 = T2◦T1 which corresponds to T2(T1()) in functional notation
(Birkhoff and Bartee, 1970).

3 Modular Generic Design

3.1 Layers of the WFSC Library

WFSC has been designed in a modular and generic way in several layers to facil-
itate its maintenance and the implementation of new algorithms (Figure 1) : the
bottom layer contains different physical realizations of automaton components
such as many different types of states and transitions. It is followed by a layer of
abstract automaton components such as one single abstract type of transitions
or states. The next higher layer contains basic automaton algorithms, and is fol-
lowed by a layer of more complex algorithms. Algorithms work only on abstract
components, and are independent of their concrete physical realizations in the
lowest layer. Physical components can change their form (to optimally adapt to
a situation) without disturbing the correct functioning of the algorithms. C++
was chosen as the implementation language, as a compromise between expressive
power, efficiency, and modularity.

Semirings, which are themselves modular theoretical concepts, are imple-
mented in WFSC in a modular way. An algorithm always works on a generic
(abstract) semiring, and functions correctly no matter which actual semiring is
behind it (provided the semiring has all properties required by the algorithm).

Programmers of algorithms will work only with abstract automaton compo-
nents (low-level interface) and do not have to deal with their concrete physical
realizations. Programmers of practical applications can use WFSC’s function
library through an API or an end-user interface (Section 4.1).

b
as

ic
al

g
o

ri
th

m
s

g
en

er
ic

arc iterator

arc set
arc

set

iterator
state iterator

state set
state

generic semiring

generic weight

accessiterate

modify
delete

insert

concatenate

compose

reverse

minimize

intersect

apply

union

determinize

in
te

rf
ac

es
hi

gh
−

le
ve

l
co

m
po

ne
nt

s
ab

st
ra

ct

(lo
w

−
le

ve
l i

nt
er

fa
ce

)

arc type 1 binary tree set state type 1 real tropical semiring

End−user interface 1
(Command line, regular expression, graphical)

Application programming interface (API) 1

o
p

er
at

io
n

s
ph

ys
ic

al
re

pr
es

en
ta

tio
ns

Fig. 1. Layers of the WFSC library (simplified extract).

3.2 Central Role of Sets

Sets play an important role in automata theory. An automaton has a state set
Q and a transition set E and each of its states q ∈ Q has a set of outgoing
transitions E(q). Automaton algorithms make extensive use of set operations.
In addition to the above sets they may manipulate sets of auxiliary “objects”
such as state pairs or pairs of a state and some related weight. For example,
the pseudocode in Figure 3, showing a modified version of the Viterbi algorithm
(Viterbi, 1967), contains 7 out of 18 lines with set operations (lines: 4, 6, 7, 8,
12, 15, 17).

To facilitate an efficient and easy implementation of algorithms, we consider
it crucial to provide WFSC with a generic and flexible implementation of sets
supporting a large number of basic set operations, alternative internal struc-
tures such as vector, list, binary tree, etc. We designed sets so that they have
a compact representation since each of the (possibly many millions of) states
of an automaton has a set of outgoing transitions, and since algorithms like
composition can dramatically increase that number.

Since the default implementation of sets in C++ does not meet these require-
ments, a special technique has been developed, called Bitwise Virtuality, that al-
lows class abstraction and polymorphism at little cost in memory (Nicart, 2003).
Furthermore, this mechanism allows on-the-fly changing of type and methods of
existing objects and hence on-the-fly conversion among set structures for runtime
optimization in different steps of an algorithm.

3.3 Algorithm Programming Style

The layer of abstract automaton components (low-level interface, Figure 1) in
the WFSC library allows us to write algorithms in a style close to pseudocode.
Low-level operations (such as keeping a list linked) are hidden inside the C++
classes that implement the abstract components. This approach facilitates the
implementation and maintenance of algorithms by allowing programmers to fully
concentrate on the algorithms themselves rather than on low-level operations.
Numerous versions of a new algorithm can be tested in relatively short time.

We illustrate this programming style on the example of a modified version of
the Viterbi algorithm. The “classical” Viterbi algorithm is used for estimating
in linear time the most likely path through a Hidden Markov Model (HMM),
given a sequence of observation symbols (Viterbi, 1967; Rabiner, 1990; Manning
and Schütze, 1999).

We use our modified version of the algorithm for identifying the “best” path
of bounded length in a WFSA, ignoring the symbols. Conceptually, the algorithm
uses a trellis of nodes where each row corresponds to one state in the WFSA,
each column to one step in the traversal (Figure 3). For example, the node in
row 2 and column 3 represents the fact of reaching state 2 after traversing 3
transitions.

In the pseudocode of the algorithm, we describe each trellis node (in column t)
by a 4-tuple mt = 〈qt, ψt, et−1, mt−1〉 with qt being the state of mt, ψt the weight
of the best path from the initial state i to qt, et−1 the last transition on this
path, and mt−1 a back-reference to the trellis node of the source state of et−1

(Figure 2). Absent elements are expressed by ⊥. The sets Mt and Mt+1 describe
the columns t and t+1 respectively. Given two weights w and w′, we write w�w′

and w≺w′ to express that w is “better” or “worse” than w′ respectively, meaning
w>w′ or w<w′ according to maximum or minimum search.

The algorithm first checks a property of the semiring K, namely whether
continuing on a path π beyond some state q can lead to a better weight than
the one compiled up to q (line 1). It then initializes M0 with a single m0 cor-
responding to the initial state i (Figure 3b and Figure 2 lines 3, 4). It inserts
into each following set Mt+1 one element mt+1 for each state q′ that can be
reached by a transition e from some state q having an element mt∈Mt (lines 8
to 17): each newly created mt+1 (line 14) is compared to a previously created
m′

t+1 of the same state n(e) which either exists in Mt+1 or is ⊥ (lines 15, 16).
Only the best of the two is kept in Mt+1 (lines 16, 17) so that at any time there
is at most one mt+1 for a given state q′ in Mt+1. A transition e is not taken
if it cannot be on the best path (lines 1, 13). Whether an m is better than
another one depends on the following conventions: ψ(m)�ψ(m′) ⇒ m�m′ ,
m=⊥ ⇒ (ψ(m)=0̄ ∧ %(q(m))=0̄) , and (m 6=⊥ ∧ m′ =⊥) ⇒ m�m′ . When
a final state qt is reached, we have identified a complete path whose weight is
ψt ⊗ %(qt) (since λ(i) = 1̄). The variable m̂ refers to the m of the final state q
of the best complete path found so far (lines 9 and 10).

In the C++ program,mt is represented by m0={q,psi,e prev,m prev},mt+1

by m1, m′
t+1 by m1a, and m̂ by mBest. The sets Mt and Mt+1 are denoted by M0

ViterbiBestPath(A,maxlength) :
1 κ ← (∀w1,w2∈K : w1⊗w2 6� w1) (improvement impossible)
2 m̂ ← ⊥
3 m0 ← 〈i, 1̄,⊥,⊥〉
4 M0 ← {m0}
5 t ← 0
6 while (t ≤maxlength) ∧ (Mt 6= 6©) do

7 Mt+1 ← 6©
8 for ∀mt ∈ Mt do

9 if ψ(m̂)⊗ %(q(m̂)) ≺ ψ(mt)⊗ %(q(mt))
10 then m̂ ← mt

11 if t < maxlength

12 for ∀e ∈ E(qt) do

13 if ¬(κ ∧ ((p(e)=n(e)) ∨ (%(p(e)) � w(e))))
14 thenmt+1 ← 〈n(e), ψt⊗w(e), e,mt〉
15 m′

t+1 ← 〈n(e), , , 〉 ∈ Mt+1 (possibly ⊥)
16 if m′

t+1 ≺ mt+1

17 then Mt+1 ← {Mt+1 − {m
′

t+1}} ∪ {mt+1}
18 t ← t+1
19 return BuildPath(m̂)

Wfsa ViterbiBestPath (Wfsa* A, int maxlength, bool min_search)

{

bool (*better_weight)(Weight, Weight, Semiring*) = (min_search) ? lower_weight : higher_weight;

Set<m> M0(), M1();

...... ;

1: bool improvement_imposs = (min_search) ? A->K->is_monAscending() : A->K->is_monDescending();

2: m* mBest = 0;

3: m* m0 = new m (A->i, A->K->_1, 0, 0);

4: M0.insert (m0);

5: int t = 0;

6: while ((t <= maxlength) && (M0.size() > 0)) {

7: M1.clear();

8: for (M0_Iterator.connect (M0); !M0_Iterator.end(); M0_Iterator++) {

m0 = M0_Iterator.item();

9: if (better_m (m0, mBest, A->K, better_weight))

10: mBest = m0;

11: if (t < maxlength) {

12: for (E_Iterator.connect (m0->q->arcSet); !E_Iterator.end(); E_Iterator++) {

e = E_Iterator.item();

13: if (! (improvement_imposs &&

(m0->q == e->target || better_weight (m0->rho(), e->weight, A->K)))) {

14: m1 = new m (e->target, A->K->extension (m0->psi, e->weight), e, m0);

M1_Iterator.connect (M1);

15: m1a = M1_Iterator.search (m1, compare_function);

16: if (better_m (m1, m1a, A->K, better_weight)) {

17: M1_Iterator.replace (m1a, m1);

delete m1a; }

else

delete m1; } } } }

18: t ++;

swap_M (M0, M1);

}

19: return BuildPath (mBest);

}

Fig. 2. Illustration of the similarity between pseudocode and C++ program through a
modified version of the Viterbi algorithm (corresponding lines have equal numbers).

(a)

0 1

2
(b)

1M0

m

m

M

m

m

m

M

m

m

m

2

m

M3

0

1

2

.....

.....

Fig. 3. Illustration of a modified Viterbi algorithm through (a) a WFST and
(b) the corresponding trellis (labels and weights are omitted).

and M1 respectively and use our own implementation of sets (Section 3.2). Null
pointers indicate absent elements.

For the purpose of optimization (in the C++ program) we add a reference
counter to each node mt and delete mt (and possibly some of its predecessors
mt−k) when it is no longer referenced by any successor node mt+j . All sets Mt−k

preceding Mt are deleted (without deleting all of their members mt−k), which
allows us to keep only two sets permanently, Mt and Mt+1, that are swapped
after each step of iteration.

4 Creating Applications With WFSC

4.1 End-User Interface

WFSC is both a compiler, creating weighted automata from different descrip-
tions, and an interactive programming and testing environment. Easy, intuitive
definition and manipulation of networks, as in Xerox’s non-weighted XFST
toolkit (Karttunen et al., 1996-2003; Beesley and Karttunen, 2003), are vital
to the success of an application (Äıt-Mokhtar and Chanod, 1997; Grefenstette,
Schiller, and Äıt-Mokhtar, 2000).

A network can be described either through an enumeration of its states and
transitions, including weights, or through a rational expression (i.e., a regular
expression with weights).

The interactive WFSC interface provides commands for reading, writing,
optimizing, exploring, visualizing, and applying networks to input. One can also
create new networks from existing ones by explicitly calling operations such
as union and composition. WFSC commands can be executed interactively or
written to a batch file and executed as a single job. Using WFSC it is possible
to read legacy non-weighted networks, created by XFST, and add weights to
their states and transitions. Conversely, weights can be stripped from a weighted
network to produce a non-weighted network compatible with XFST.

A new finite-state programming language is also under development (Beesley,
2003). In addition to the compilation of regular-expression and phrase-structure
notations, it will provide boolean tests, imperative control structures, Unicode
support, and a graphical user interface.

4.2 An Implemented Application

Optical Character Recognition (OCR) converts the bitmap of a scanned page of
text into a sequence of symbols (characters) equal to the text. Post-OCR Correc-
tion attempts to reduce the number of errors in a text generated by OCR, using
language models and other statistical information. This task can be performed
with WFSTs (Abdallahi, 2002).

Output:

corrected line

(candidate set)

Reverse

noise model

Input:

text line

from OCR

Best path

selection

Language

model

Tokenisation

into words

Upper−to−

lower case

transformation

WFSA WFST WFSA WFST WFST WFST Function

LT U bONI

Fig. 4. Block diagram of the post-OCR correction of one text line, using WFSTs.

The task consists in finding the most likely corrected output text line ô in the
set of all possible output lines O, given an input line i generated by OCR:

ô = arg max
o∈O

p(o | i) (3)

The implementation of this task with WFSC uses some basic automaton al-
gorithms: composition, best-path search, and projection of either the input or
output tape of a transducer (Figure 4) :

ô = projecti(bestpath(projecto(I �N) � T � U � L)) (4)

First, we build a WFSA I representing the input line. Each transition of I
is labeled with one (possibly incorrect) symbol of this line. Then, we construct
the output-side projection of the composition of I with a WFST N representing
a reverse noise model : projecto(I � N). The language of the resulting WFSA
contains all lines of text that could have generated the (possibly incorrect) OCR
output. To find the most likely from among those lines, we compose them with
a WFST T , that introduces separator symbols between words, a WFST U , that
transforms all upper-case letters into lower-case, and a WFST L, that represents
a language model : (. . . � T � U � L). Finally, we take the input-side projection
of the best path: projecti(bestpath(. . .)).

Note that N evaluates the probability of letter sequences and L the proba-
bility of word sequences.

5 Conclusion

The article presented a new tool, WFSC, for creating, manipulating, and ap-
plying weighted finite state automata. WFSC inherits some powerful features
from Xerox’s non-weighted XFST tool, such as the “unknown symbol” and flag
diacritics.

In WFSC, all algorithms work on abstract components of automata and on
a generic abstract semiring, and are independent of their concrete realizations.
Algorithm programmers can write in a style close to pseudocode which allows
for fast prototyping. Since automaton algorithms make extensive use of set op-
erations, special care has been given to a generic and flexible implementation
of sets supporting a large number of basic operations and alternative internal
structures that are inter-changeable on-the-fly.

Programmers of applications can either access WFSC’s function library
through an API or create weighted automata through an end-user interface.
The interface has a basic set of commands for network creation, input and out-
put, operations on networks, network optimization, inspection, display, etc. Au-
tomata are built either from an enumeration of their states and transitions or
from regular expressions that are extended to allow for specification of weights.

WFSC can be used in large-scale real-life applications. It does, however, not
yet have all features initially planned. The implementation work is continuing,
and due to WFSC’s generic and modular design new features and algorithms
can be added easily.

Acknowledgments. We would like to thank Jean-Marc Champarnaud
and Kenneth R. Beesley for their advice, and Lemine Abdallahi for his help in
implementing the described application.

References

Abdallahi, Lemine. 2002. Ocr postprocessing. Internal technical report, Xerox
Research Centre Europe, Meylan, France.

Äıt-Mokhtar, Salah and Jean-Pierre Chanod. 1997. Incremental finite-state
parsing. In Proceedings of Applied Natural Language Processing, Washington,
DC.

Beesley, Kenneth R. 2003. A language for finite state programming. In prepa-

ration.
Beesley, Kenneth R. and Lauri Karttunen. 2003. Finite State Morphology. CSLI

Publications, Palo Alto, CA, USA. URL: http://www.fsmbook.com/.
Birkhoff, Garrett and Thomas C. Bartee. 1970. Modern Applied Algebra.

McGraw-Hill, New York, USA.
Eilenberg, Samuel. 1974. Automata, Languages, and Machines, volume A. Aca-

demic Press, San Diego, CA, USA.

Grefenstette, Greg, Anne Schiller, and Salah Äıt-Mokhtar. 2000. Recognizing
lexical patterns in text. In F. Van Eynde and D. Gibbon, editors, Lexicon De-

velopment for Speech and Language Processing. Kluwer Academic Publishers,
pages 431–453.

Kaplan, Ronald M. and Martin Kay. 1981. Phonological rules and finite state
transducers. In Winter Meeting of the Linguistic Society of America, New
York, USA.

Karttunen, Lauri, Jean-Pierre Chanod, Greg Grefenstette, and Anne Schiller.
1997. Regular expressions for language engineering. Journal of Natural Lan-

guage Engineering, 2(4):307–330.

Karttunen, Lauri, Tamás Gaál, Ronald M. Kaplan, André Kempe, Pasi
Tapanainen, and Todd Yampol. 1996-2003. Xerox Finite-State Home

Page. Xerox Research Centre Europe, Grenoble, France. URL:
http://www.xrce.xerox.com/competencies/content-analysis/fst/.

Karttunen, Lauri, Ronald M. Kaplan, and Annie Zaenen. 1992. Two-level mor-
phology with composition. In Proceedings of COLING’92, pages 141–148,
Nantes, France.

Koskenniemi, Kimmo, Pasi Tapanainen, and Atro Voutilainen. 1992. Com-
piling and using finite-state syntactic rules. In Proceedings of COLING’92,
volume 1, pages 156–162, Nantes, France.

Kuich, Werner and Arto Salomaa. 1986. Semirings, Automata, Languages.
Number 5 in EATCS Monographs on Theoretical Computer Science. Springer
Verlag, Berlin, Germany.

Manning, Christopher D. and Hinrich Schütze. 1999. Foundations of Statistical

Natural Language Processing. MIT Press, Cambridge, MA, USA.

Mohri, Mehryar. 1997. Finite-state transducers in language and speech process-
ing. Computational Linguistics, 23(2):269–312.

Mohri, Mehryar. 2002. Generic epsilon-removal and input epsilon-normalization
algorithms for weighted transducers. International Journal of Foundations

of Computer Science, 13(1):129–143.

Mohri, Mehryar, Fernando C. N. Pereira, and Michael Riley. 1998. A rational
design for a weighted finite-state transducer library. Number 1436 in Lecture
Notes in Computer Science. Springer Verlag, Berlin, Germany, pages 144–158.

Nicart, Florent. 2003. Toward scalable virtuality in C++. In preparation.

Pereira, Fernando C. N. and Michael D. Riley. 1997. Speech recognition by
composition of weighted finite automata. In Emmanuel Roche and Yves
Schabes, editors, Finite-State Language Processing. MIT Press, Cambridge,
MA, USA, pages 431–453.

Rabiner, Lawrence R. 1990. A tutorial on hidden markov models and selected
applications in speech recognition. In Alex Waibel and Kai-Fu Lee, editors,
Readings in Speech Recognition. Morgan Kaufmann, pages 267–296.

Roche, Emmanuel and Yves Schabes. 1997. Finite-State Language Processing.
MIT Press, Cambridge, MA, USA.

Silberztein, Max. 1999. INTEX: a finite state transducer toolbox. volume 231
of Theoretical Computer Science. Elsevier Science, pages 33–46.

Sproat, Richard. 1992. Morphology and Computation. MIT Press, Cambridge,
MA.

Sproat, Richard. 2000. A Computational Theory of Writing Systems. Cam-
bridge University Press, Cambridge, MA.

Sproat, Richard. 2003. Lextools Home Page. AT&T Labs – Research, Florham
Park, NJ, USA. URL: http://www.research.att.com/sw/tools/lextools/.

van Noord, Gertjan. 2000. FSA6 – Finite State Automata Utilities Home

Page. Alfa-informatica, University of Groningen, The Netherlands. URL:
http://odur.let.rug.nl/ vannoord/Fsa/.

Viterbi, Andrew J. 1967. Error bounds for convolutional codes and an asymp-
totical optimal decoding algorithm. In Proceedings of the IEEE, volume 61,
pages 268–278. Institute of Electrical and Electronics Engineers.

Watson, Bruce W. 1994. The Design and Implementation of the FIRE engine:

A C++ Toolkit for Finite Automata and Regular Expressions. Computing
science note 94/22, Eindhoven University of Technology, The Netherlands.

